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Abstract 

Artificial intelligence (AI) has established itself as an essential tool in climatology. 

It facilitates accurate analysis and prediction of variables such as temperature and 

humidity, which are crucial for understanding global warming and its effects. In 

this context, this study aims to implement predictive simulations of temperature 

and relative humidity on the Ecuadorian coast using artificial intelligence (AI). 

This study adopts a quantitative methodology, utilizing daily historical data 

collected from 2015 to 2020. Monthly averages for maximum temperature and 

relative humidity were calculated, based on 72 observations for each variable. The 

climate simulation employed statistical techniques such as linear regression and 

simple correlation, along with the implementation of various AI libraries in 

Rstudio, including readxl, QuantPsyc, and ggplot2, among others. Additionally, the 

ARIMA model was applied to analyze time series, facilitating detailed simulation 

and prediction of both climatic variables. The results indicate a significant inverse 

correlation between maximum temperature and relative humidity, revealing high-

temperature variability in recent years. The optimized ARIMA predictive models 

showed AICC indices of 180.47 for temperature and 283.16 for humidity, after 96 

iterations, demonstrating the high reliability of AI in climate prediction for the 

Ecuadorian coastal region. The study concludes with the importance of integrating 

advanced technologies such as AI in climatology to improve the accuracy and 

efficiency of climate predictions. 
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1. Introduction 

Modeling and predicting climatic conditions through artificial intelligence (AI) are essential tools for studying 

and understanding the effects of seasonal variations across multiple time scales. There are notable advances in 

research in this field [1], [2]. However, significant deficiencies are observed in the integration and 

comprehensive analysis of multivariable data, such as relative humidity and temperature, covering extended 
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periods. The application of machine learning techniques still requires further development and tuning to enhance 

the accuracy and applicability of predictive models in various climatic contexts [3]. These improvements are 

vital for a more accurate assessment of future climate patterns and for effectively responding to emerging 

environmental challenges. 

The use of AI tools, particularly the programming language RStudio, has proven effective in quantifying and 

modeling the behavior of important climatic variables like relative humidity. These tools provide crucial means 

for the detailed analysis of climatic trends and patterns [4]. Nevertheless, it is critical to expand research to 

establish an effective correlation between these data and other determining climatic factors, especially 

temperature, whose variations are key to understanding the dynamics of climate change [5], [6]. 

The study of relative humidity and temperature is of fundamental importance due to their direct impact on the 

planet's energy balance and their influence on critical areas such as resource management, agriculture, and 

public health [7]. A deep understanding of these factors is essential to adapt to the adverse effects of climate 

change and to formulate and implement effective sustainability policies. The interaction of these climatic 

elements determines environmental patterns that affect biodiversity and ecosystems, imposing significant 

pressures on economic and social systems. Thus, deepening their study not only helps mitigate risks but also 

plans future interventions to ensure long-term sustainable development. 

Artificial intelligence has revealed a slow and steady increase in the mean air temperature over recent years [6], 

[8]. SARIMA models, adjusted to datasets of maximum temperature, have proven suitable through diagnostic 

verification of correlation using ACF, PACF, IACF, and p-values from the residual statistics of the Ljung-Box 

test [9], [10], [11]. The model parameters are obtained using the maximum likelihood method, assisted by 

information criteria such as Akaike (AIC), Bayesian (BIC), and corrected Akaike (AICc) [12], [13], [14]. 

From previous studies on the simulation and prediction of climatic variables like maximum temperature and 

relative humidity, the relevance of these indicators in understanding the impact of climate change stands out 

[15], [16], [17]. The application of artificial intelligence (AI) facilitates the automatic selection of predictive 

models and the adjustment of parameters, thus optimizing the accuracy of climate predictions [18], [19]. In this 

context, the following hypotheses have been formulated for the current research: 

H1: There is an inverse correlation between relative humidity and maximum temperature, suggesting that 

variations in one could inversely influence the other. 

H2: Artificial intelligence selects the best predictive model for maximum temperature, adjusting parameters to 

maximize accuracy and capture the observed positive trend and seasonality. 

H3: Similarly, AI selects the best predictive model for relative humidity, ensuring that parameter adjustments 

adequately reflect a positive trend and seasonality. 

Therefore, the main objective of this study was to implement predictive simulations of temperature and relative 

humidity on the Ecuadorian coast using artificial intelligence (AI), in order to explore the interaction between 

these variables and evaluate their impact on the region’s climate dynamics. 

2. Theoretical foundations 

2.1.  Importance of temperature and relative humidity in climatic studies 

Temperature and relative humidity are crucial parameters in climatic research, as they directly influence 

biodiversity, agriculture, public health, and water resource management [20], [21], [22]. A detailed analysis of 

these variables is essential for understanding climate changes and their effects on specific ecosystems. 

2.2. Application of artificial intelligence in meteorology 

AI has revolutionized the field of meteorology, facilitating the modeling and prediction of climatic variables 

with high precision [23], [24]. AI's ability to process large volumes of data and recognize complex patterns 
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enables the prediction of meteorological phenomena in advance, which is crucial for planning and responding 

to emergencies [25], [26]. 

2.3.   Predictive models in climatology 

Within the realm of climate prediction, time series models such as ARIMA and SARIMA are widely used due 

to their ability to adjust and forecast trends based on historical data [27], [28]. The selection of the most suitable 

model is verified using statistical criteria such as the AIC, BIC, and Ljung-Box tests, which assess the model's 

suitability based on correlation and residuals [29], [30]. 

2.4.  Artificial intelligence in predicting temperature and relative humidity 

Specifically, in predicting temperature and relative humidity, AI has proven to be an effective tool for capturing 

and modeling the environmental dynamics of these variables. Studies show that while neural networks have 

been effective in reproducing patterns of relative humidity, there are still challenges in predicting long-term 

trends [31], [32]. Additionally, the accuracy of hourly and daily predictions using metrics such as MAPE and 

RMSE, are key indicators of predictive accuracy [33], [34]. 

3. Methodology 

3.1.  Methodological approach 

This research adopts a quantitative approach, characterized by being both retrospective, as it is based on 

historical data, and prospective, by making short-term predictions. Artificial intelligence is used to simulate and 

predict critical climatic variables, specifically maximum temperature and relative humidity on the coast of 

Ecuador. 

3.2.   Data collection 

The climatic data analyzed in this study include maximum temperature, recorded in degrees Celsius, and relative 

humidity, reported in percentage. These were obtained from the meteorological station of the Escuela Superior 

Politécnica Agropecuaria de Manabí (ESPAM) from the beginning of 2015 to the end of 2020. A total of 13,140 

observations were recorded, divided into three periods of the day: morning, midday, and evening. Subsequently, 

Excel was used to calculate the daily and monthly average of each variable, resulting in 72 monthly observations 

for each. 

3.3.   Analysis tools 

For statistical analysis and modeling, AI-adapted packages and libraries in RStudio were used, including readxl, 

QuantPsyc, psych, GGally, xts, ggplot2, tidyverse, colourpicker, and psych for linear regression and correlation 

analysis. For autoregressive integrated moving average (ARIMA) modeling, packages such as report, reshape2, 

feasts, fabletools, lfable, tsibble, fpp2, dplyr, lubridate, tidyr, tseries, forecast, and astsA were employed. 

3.4.  Statistical tests and diagnostics 

The augmented Dickey-Fuller test was performed to assess the stationarity of the time series, and Ljung-Box 

and Bartlett tests were used to analyze the autocorrelation (white noise) and the homogeneity of the variances 

(homoscedasticity), respectively. The normality of the distributions was verified using the Kolmogorov-

Smirnov test. These tests are fundamental for the training, calibration, and evaluation of the models with a 95% 

confidence interval [35]. 

3.5. Time series models and model evaluation 

Auto-correlograms of the partial autocorrelation function (PACF) and simple (ACF) were analyzed to determine 

the suitability of time series models, mainly the SARIMA model, which considers components of seasonality 

and trend. The goodness of fit parameters such as the mean absolute percentage error (MAPE), the mean squared 

error (MSE), and the stationary correlation were calculated to measure the model's effectiveness in relation to 

observed values [36], [37]. Additionally, the accuracy of the selected model was evaluated using the Akaike 
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Information Criterion (AIC and AICc) [38], [39], [40], providing a reliable estimate of the quality of the adjusted 

model. 

4. Results and discussion 

This section presents the results obtained through statistical analysis using artificial intelligence to assess 

maximum temperature (°C) and relative humidity (%) on the coast of Ecuador. The results are displayed through 

various tables and statistical figures, which facilitate the interpretation of the relationships between the studied 

variables. 

 

Figure 1. Dynamics of relative humidity in relation to maximum temperature 

The chart presented illustrates an inverse correlation between maximum temperature and relative humidity on 

the Ecuadorian coast during the period 2015-2020. We observe that as maximum temperature increases, the 

percentage of relative humidity decreases. This pattern becomes more pronounced from 33°C onwards, 

coinciding with a noticeable decrease in humidity and an increase in the dispersion of humidity values observed 

in recent years. 

Several studies have documented that variations in temperature can significantly influence relative humidity 

due to the capacity of warm air to contain more water vapor than cold air [41], [42], [43]. Moreover, an increase 

in temperature is linked with more erratic humidity patterns, reflecting a complex and multifaceted interaction 

between these climatic elements [44]. 

The application of robust statistical models has allowed for the quantification of this relationship, revealing that 

the variability of relative humidity intensifies with the increase of extreme temperatures. This phenomenon 

underscores the importance of monitoring and understanding climate dynamics in coastal areas, which are 

particularly vulnerable to the effects of climate change [45]. This analysis provides crucial evidence for the 

formulation of climate change adaptation policies, especially in preparation for more extreme conditions that 

could affect both the ecosystem and local communities. 

Next, Figure 2 presents a detailed statistical analysis that quantifies the relationship between maximum 

temperature and relative humidity in a specific context. Through the application of a linear model, this 

analysis attempts to discern the degree of influence that temperature may have on humidity in a controlled 

environment. 
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Figure 2. Climate model coefficients and goodness of fit tests 

Figure 2 presents the analysis of the coefficients and goodness of fit tests for a climate model that assesses the 

relationship between relative humidity and maximum temperature. The adjusted model shows that the intercept 

is statistically significant at the 0.1% level (p = 0.000942, t = 8.161), suggesting that when the maximum 

temperature is zero, the expected value of relative humidity is approximately 107.8%. However, this is 

theoretically impossible given the actual physical conditions, indicating possibly an inappropriate extrapolation 

of the model or the need for an adjustment in the temperature scale. 

On the other hand, the coefficient associated with maximum temperature is -0.7555, with a p-value of 0.0556. 

This value is marginally above the conventional threshold of 0.05, suggesting a negative trend between 

temperature and relative humidity, although this relationship does not reach statistical significance at the 5% 

level. This may indicate a weak relationship or the need for more data to confirm this effect. The model has an 

adjusted R-squared of 0.0377, indicating that only 3.77% of the variability in relative humidity is explained by 

variations in maximum temperature. This suggests that other factors not included in the model may be 

influencing relative humidity [46]. The F-statistic of 3.788 with a p-value of 0.0556 reflects that the model is 

marginally significant at the global level. That is, a p-value close to the threshold of 0.05 may require a more 

careful evaluation of the statistical power and sample sizes used in the analysis [47], [48]. 

 
Figure 3. Dickey-Fuller test from non-stationary to stationary for temperature and relative humidity 
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In Figure 3, the results of the augmented Dickey-Fuller test are presented and applied to assess the stationarity 

of the time series for maximum temperature and relative humidity. This analysis is crucial for identifying the 

presence of trends or seasonality in the time series, critical aspects for adequately modeling climatic phenomena. 

Initially, the tests revealed that both the maximum temperature series and the relative humidity series were non-

stationary, with p-values greater than 0.05, indicating the presence of trends and/or seasonal components in the 

data. This non-stationarity implies that the means and variances of the series can change over time, affecting 

the accuracy of predictions if not properly handled [49]. 

To transform the series into stationary ones, a first difference was applied to each series (denoted as Differ1 for 

temperature and differences for relative humidity). The results after this transformation showed p-values less 

than 0.05, indicating that the differenced series is stationary and, therefore, suitable for future analysis and 

modeling. 

The transformation of series from non-stationary to stationary is crucial for the application of predictive models 

like ARIMA, which assume stationarity in the data. By ensuring that the series are stationary, the reliability of 

the forecasting models is improved [50]. This step is essential to avoid erroneous inferences and improve the 

accuracy in predicting climatic phenomena. 

The need to differentiate time series to achieve stationarity is a common step in the analysis of climatic time 

series, as demonstrated by previous studies [51]. Applying these techniques facilitates the identification of 

underlying patterns and responding to questions about climate dynamics and its potential impact, especially in 

sensitive areas like the Ecuadorian coast. 

Table 1. Simulations and iterations of temperature and relative humidity through artificial intelligence 

Maximum Temperature Simulations (°C) Relative Humidity Simulations (%) 

N° Number of iterations N° Number of iterations 

1 ARIMA(0,1,0)(0,1,0)[12] : 220.7055 1 ARIMA(0,1,0)(0,1,0)[12] : 317.106 

2 ARIMA(0,1,0)(0,1,1)[12] : 209.9701 2 ARIMA(0,1,0)(0,1,1)[12] : 297.2272 

3 ARIMA(0,1,0)(0,1,2)[12] : 212.1899 3 ARIMA(0,1,0)(0,1,2)[12] : 299.1942 

4 ARIMA(0,1,0)(1,1,0)[12] : 216.0152 4 ARIMA(0,1,0)(1,1,0)[12] : 300.7595 

5 ARIMA(0,1,0)(1,1,1)[12] : 212.191 5 ARIMA(0,1,0)(1,1,1)[12] : 299.1541 

14 ARIMA(0,1,1)(1,1,1)[12] : Inf 14 ARIMA(0,1,1)(1,1,1)[12] : Inf 

15 ARIMA(0,1,1)(1,1,2)[12] : Inf 15 ARIMA(0,1,1)(1,1,2)[12] : Inf 

16 ARIMA(0,1,1)(2,1,0)[12] : 180.4718 16 ARIMA(0,1,1)(2,1,0)[12] : 283.8902 

17 ARIMA(0,1,1)(2,1,1)[12] : 182.1128 17 ARIMA(0,1,1)(2,1,1)[12] : Inf 

38 ARIMA(1,1,0)(0,1,1)[12] : Inf 38 ARIMA(1,1,0)(0,1,1)[12] : Inf 

39 ARIMA(1,1,0)(0,1,2)[12] : 193.4651 39 ARIMA(1,1,0)(0,1,2)[12] : 283.2629 

88 ARIMA(3,1,1)(0,1,0)[12] : 202.0975 40 ARIMA(1,1,0)(1,1,0)[12] : 286.3039 

89 ARIMA(3,1,1)(0,1,1)[12] : Inf 41 ARIMA(1,1,0)(1,1,1)[12] : 283.1664 

90 ARIMA(3,1,1)(1,1,0)[12] : Inf 42 ARIMA(1,1,0)(1,1,2)[12] : Inf 

91 ARIMA(3,1,2)(0,1,0)[12] : Inf 91 ARIMA(3,1,2)(0,1,0)[12] : 308.273 

92 ARIMA(4,1,0)(0,1,0)[12] : 202.416 92 ARIMA(4,1,0)(0,1,0)[12] : 306.392 

93 ARIMA(4,1,0)(0,1,1)[12] : Inf 93 ARIMA(4,1,0)(0,1,1)[12] : Inf 

94 ARIMA(4,1,0)(1,1,0)[12] : 193.9918 94 ARIMA(4,1,0)(1,1,0)[12] : 288.8698 

95 ARIMA(4,1,1)(0,1,0)[12] : 204.7369 95 ARIMA(4,1,1)(0,1,0)[12] : 308.5597 

96 ARIMA(5,1,0)(0,1,0)[12] : 204.823 96 ARIMA(5,1,0)(0,1,0)[12] : 307.6009 
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In Table 1, the process of model selection through the use of the auto.arima function of AI is displayed, which 

performed 96 iterations to identify the optimal models for maximum temperature and relative humidity on the 

coast of Ecuador. This automated approach is essential for adjusting time series models that adequately 

capture the climatic dynamics of the region. 

For maximum temperature, artificial intelligence selected the thirteenth iteration, corresponding to the ARIMA 

model (0,1,1)(2,1,0). This model indicates that after applying one non-seasonal differentiation and another 

seasonal differentiation, the best approach to capture the seasonality and trend of temperature includes one 

moving average term in the non-seasonal component and two moving average terms in the seasonal component 

with annual periodicity. The choice of this model suggests that maximum temperature exhibits clear seasonal 

patterns, which is consistent with observations of meteorological phenomena that show regular annual 

fluctuations [52], [53]. 

For relative humidity, the selected model was ARIMA (1,1,0)(1,1,1) in iteration forty-one. This model combines 

an autoregressive term and a moving average term in its seasonal and non-seasonal components, which is 

indicative that relative humidity presents both seasonality and abrupt changes in the mean, required to 

adequately model its volatile behavior and variations throughout the year. 

The selection of these models by artificial intelligence reflects the presence of seasonality, trend, autoregression, 

and abrupt changes in the mean of the analyzed time series. These elements are crucial for understanding and 

predicting climatic conditions in the region, which has direct implications for agricultural planning, water 

resource management, and adaptation to climate change [54], [55]. Furthermore, the use of advanced predictive 

models, like those based on artificial intelligence, must be guided by a strong ethical framework to ensure the 

responsible handling of data and decision-making processes. In other fields, such as accounting, ethical 

responsibility is fundamental to ensuring the integrity of information used in critical decision-making [56]. 

 

Figure 4. Simulations of maximum temperature and relative humidity on the coast of Ecuador 

Figure 4 illustrates the validation of the ARIMA models generated for maximum temperature and relative 

humidity on the Ecuadorian coast, using the maximum likelihood technique. These models have been selected 

through a rigorous statistical process that includes the optimization of criteria such as Akaike Information 

Criterion (AIC), corrected Akaike (AICc), and Bayesian Information Criterion (BIC). 

The ARIMA (0,1,1)(2,1,0) model applied to maximum temperature exhibits excellent statistical performance. 

The AIC values of 179.73 and AICc of 180.47 indicate proper model fit, while the BIC of 188.04 confirms the 

model's efficiency in terms of penalty for the number of parameters. The Ljung-Box test for the model's residuals 

shows a p-value of 0.4937, indicating that there is no significant autocorrelation in the residuals, and the model 

adequately captures the dependency structure in the maximum temperature data [57]. 
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On the other hand, relative humidity is modeled with an ARIMA (1,1,0)(1,1,1). The Akaike and Bayesian 

criteria also indicate excellent model fit and efficiency, with AICc values of 283.17 and BIC of 290.74. Similar 

to the maximum temperature model, the Ljung-Box test yields a p-value of 0.6213 for the residuals, suggesting 

the absence of residual autocorrelation and confirming that the model is appropriate for relative humidity data. 

The confirmation of these models' validity through Ljung-Box tests and information criteria indicates that both 

models are robust and reliable for simulating and predicting climatic conditions. The absence of residual 

autocorrelation and the adequate capture of the seasonality and underlying trend in the data is essential for 

making reliable projections that can inform climate change adaptation policies and natural resource management 

strategies [58], [59]. 

 

Figure 5. Residual simulations of maximum temperature and relative humidity on the coast of Ecuador 

Figure 5 illustrates the analysis of the residuals derived from the ARIMA models selected for maximum 

temperature and relative humidity. Residuals are crucial for validating the quality of a time series model, as they 

indicate the amount of information not explained by the model. 

The residuals of the ARIMA (0,1,1)(2,1,0) model for maximum temperature show fluctuations that appear not 

to present clear systematic patterns over time, which is a positive indicator of the model's adequacy. The 

autocorrelation chart (ACF) for these residuals indicates that all autocorrelations are within the confidence 

limits, suggesting that there are no significant autocorrelations in the residuals and that the model has adequately 

captured the dependency structure in the data. 

The distribution of the residuals, represented in the density plot, approximates a normal distribution, which is 

corroborated by the red fit line. This normality is consistent with the underlying assumptions of many statistical 

tests used for subsequent inferences, strengthening the reliability of the predictions generated by the model [60], 

[61]. 

For relative humidity, the ARIMA (1,1,0)(1,1,1) model also shows residuals without clear patterns of 

autocorrelation over time, as observed in its respective time graph and ACF. This indicates that the model is 
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effective in modeling relative humidity without leaving unexplained autocorrelations [62]. Similar to maximum 

temperature, the histogram of the residuals with its corresponding normal curve fit shows that the residuals are 

distributed approximately normally, fulfilling another key assumption for the validation of the statistical model. 

The normality and absence of autocorrelation in the residuals are indicative that the models are adequate and 

complete, which is essential for making accurate and reliable predictions. These results allow researchers and 

planners to use these models to predict maximum temperature and relative humidity with greater confidence, 

facilitating planning in response to variable climatic conditions [63]. 

Table 2. Forecasts for maximum temperature and relative humidity from 2021 to 2024 

Maximum temperature forecasts (°C) Forecasts relative humidity (%) 

Months/years Forecast Forecast Lo 95 Forecast Hi 95 Forecast Forecast Lo 95 Forecast Hi 95 

1/1/2021 34.22623 32.34050 36.11196 82.24920 77.76913 86.72928 

1/2/2021 32.96561 31.05921 34.87201 84.35447 79.39970 89.30925 

1/3/2021 34.41416 32.48731 36.34101 83.83164 77.85977 89.80351 

1/4/2021 34.40953 32.46245 36.35662 81.89022 75.33782 88.44261 

1/5/2021 33.85094 31.88382 35.81805 82.03950 74.82015 89.25886 

1/6/2021 33.37188 31.38494 35.35882 82.59960 74.83609 90.36310 

1/7/2021 33.69443 31.68786 35.70100 82.37683 74.07256 90.68109 

1/8/2021 34.07857 32.05256 36.10458 80.87541 72.07983 89.67098 

1/9/2021 34.57205 32.52678 36.61731 80.13996 70.87056 89.40937 

1/10/2021 34.31540 32.25106 36.37974 80.29411 70.57908 90.00914 

1/11/2021 33.87015 31.78691 35.95339 76.56523 66.42013 86.71033 

1/12/2021 34.40621 32.30424 36.50818 78.76732 68.21476 89.31988 

1/1/2022 33.92280 31.62391 36.22168 82.49701 71.47071 93.52330 

1/2/2022 33.28387 30.95434 35.61340 84.14421 72.71959 95.56882 

1/3/2022 34.91400 32.55422 37.27378 84.62481 72.80130 96.44831 

1/4/2022 34.60193 32.21228 36.99157 81.35646 69.15425 93.55867 

1/5/2022 33.77383 31.35469 36.19298 81.71447 69.14127 94.28766 

1/6/2022 33.61321 31.16492 36.06149 82.48737 69.55579 95.41895 

1/7/2022 33.35593 30.87884 35.83301 82.14921 68.86776 95.43066 

1/8/2022 34.25003 31.74448 36.75559 80.21176 66.59030 93.83323 

1/9/2022 34.28941 31.75570 36.82311 79.60676 65.65258 93.56093 

1/10/2022 34.63012 32.06858 37.19167 79.39034 65.11272 93.66797 

1/11/2022 33.44086 30.85177 36.02994 75.95817 61.36168 90.55466 

1/12/2022 34.95471 32.33838 37.57105 78.63762 63.73402 93.54122 

1/1/2023 34.41282 31.66793 37.15772 82.11471 66.66796 97.56147 

1/2/2023 33.61251 30.83195 36.39308 83.83999 68.01725 99.66272 

1/3/2023 35.09785 32.28206 37.91363 84.14924 67.90221 100.39627 

1/4/2023 34.56281 31.71223 37.41338 81.10756 64.47666 97.73846 

1/5/2023 34.23050 31.34556 37.11544 81.42993 64.40871 98.45115 

1/6/2023 33.66882 30.74992 36.58772 82.16646 64.77155 99.56137 

1/7/2023 33.40578 30.45331 36.35826 81.84802 64.08307 99.61298 

1/8/2023 34.29448 31.30881 37.28015 79.98507 61.86013 98.11002 

1/9/2023 34.26128 31.24278 37.27978 79.35778 60.87794 97.83762 

1/10/2023 34.82784 31.77686 37.87881 79.20468 60.37882 98.03054 

1/11/2023 33.56312 30.48001 36.64622 75.72181 56.55287 94.89076 

1/12/2023 34.36411 31.24920 37.47902 78.31970 58.81969 97.81971 

1/1/2024 34.34576 30.80408 37.88744 81.83995 61.82055 101.85936 

1/2/2024 33.31949 29.72251 36.91646 83.55189 63.15053 103.95325 
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Maximum temperature forecasts (°C) Forecasts relative humidity (%) 

Months/years Forecast Forecast Lo 95 Forecast Hi 95 Forecast Forecast Lo 95 Forecast Hi 95 

1/3/2024 34.80277 31.15133 38.45421 83.89042 63.06977 104.71106 

1/4/2024 34.57774 30.87264 38.28284 80.81001 59.60145 102.01857 

1/5/2024 34.06454 30.30655 37.82254 81.13847 59.53709 102.73985 

1/6/2024 33.59562 29.78546 37.40578 81.88121 59.90027 103.86216 

1/7/2024 33.64566 29.78404 37.50727 81.55941 59.20194 103.91687 

1/8/2024 34.26586 30.35346 38.17825 79.68372 56.95809 102.40936 

1/9/2024 34.52242 30.55989 38.48495 79.06024 55.97054 102.14995 

1/10/2024 34.62243 30.61040 38.63446 78.89632 55.45039 102.34225 

1/11/2024 33.80401 29.74308 37.86494 75.42212 51.62180 99.22243 

1/12/2024 34.55020 30.44095 38.65945 78.03394 53.89083 102.17705 

Table 2 presents the forecasts for maximum temperature and relative humidity on the coast of Ecuador, derived 

from the ARIMA (0,1,1)(2,1,0) model for temperature and an analogous model for humidity. These forecasts 

cover the period from 2021 to 2024 and highlight the observed variability across different seasons, a direct 

reflection of regional climatic patterns. 

The analysis reveals significant seasonal fluctuations in temperature. For the year 2023, a maximum temperature 

of 35.09 °C is forecasted during the rainy season, demonstrating high thermal variability with a range dropping 

to 32.96 °C in 2021. This variation of 2.13 °C between annual extremes underscores the influence of seasonal 

meteorological phenomena and their impact on regional temperatures. 

Regarding relative humidity, the data projects a maximum peak of 84.62% during the winter season, while the 

lowest recorded value is 75.42% during the dry season. The observed variability of 9.20% in relative humidity 

between these seasons reflects environmental responses to changes in precipitation and temperatures. 

Forecasts based on ARIMA models are valuable tools for climatic and environmental planning, especially in 

regions susceptible to significant climatic variations like the Ecuadorian coast. According to studies, the ability 

to foresee fluctuations in temperature and humidity is crucial for agriculture, water resource management, and 

public health [64], [65]. 

Furthermore, the predictive capacity of ARIMA models, particularly in seasonal configurations, allows planners 

and scientists to anticipate adverse conditions and design appropriate mitigation strategies. The accuracy of 

these models, as reflected in the confidence intervals and close adherence to historical patterns, strengthens 

confidence in their practical utility. 

 

Figure 6. Predictive models for temperature and humidity on the coast of Ecuador 

Figure 6 presents the predictive models for maximum temperature and relative humidity on the Ecuadorian 

coast, extending up to 2024. These models offer a clear visualization of the projected trends and expected 

fluctuations in both climatic variables over time, allowing for an accurate interpretation of their future behavior 

under changing climatic conditions. 
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The model for maximum temperature shows a generally stable trend with significant fluctuations throughout 

the year, which is typical in tropical regions where interannual variability may be minimal but intra-annual 

variations are pronounced. The graphical representation includes a confidence interval, denoted by the shaded 

area, which provides an estimate of the uncertainty associated with the predictions. This feature is crucial for 

proper planning in response to heatwaves or unusually cold periods that could impact agriculture and public 

health [66]. 

As for relative humidity, the model predicts a gradual decrease over the years, with a wide confidence interval 

that reflects the uncertainty inherent in predicting this variable. This downward trend could be influenced by 

factors such as rising temperatures and changes in precipitation patterns, suggesting the need for adaptation 

strategies in sectors such as water management and agriculture to combat the effects of water stress. 

The presented models are fundamental for strategic decision-making in natural resource management and urban 

and rural planning. Understanding the variability and trends in these variables is essential for adapting to climate 

change, especially in coastal regions susceptible to extreme climatic variations [67]. 

The ability to foresee changes in temperature and relative humidity in advance allows planners and authorities 

to implement measures that mitigate the adverse impacts of climate change on local biodiversity, agricultural 

production, and public health, as studies on the adaptation of ecosystems to changing climates suggest [68]. 

Table 3. Goodness of fit coefficients for simulation models of maximum temperature and relative humidity 

Series: Maximum Temperature (°C): ARIMA(0,1,1)(2,1,0) [12] 

Acronym ME RMSE MAE MPE MAPE MASE ACF1 

Coefficients -0.1375942 0.8485132 0.6285502 -0.4349521 1.853311 0.6646636 -0.09364487 

Series: Relative Humidity (%): ARIMA(1,1,0)(1,1,1) [12] 

Acronym ME RMSE MAE MPE MAPE MASE ACF1 

Coefficients 0.05574289 1,965356 1.525231 0.02668258 1.863756 0.5383169 -0.06588713 

Table 3 provides a detailed assessment of the reliability of the predictive models for maximum temperature and 

relative humidity on the coast of Ecuador, using key statistical indicators generated through artificial 

intelligence. The results demonstrate notable consistency between the models for both climatic variables, 

reflecting the robustness and precision of the modeling techniques employed. 

Key indicators such as mean error (ME), root mean square error (RMSE), mean absolute error (MAE), mean 

percentage error (MPE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and first 

order autocorrelation of residuals (ACF1) exhibit values very close to zero, indicating a high degree of accuracy 

in the predictions. These coefficients confirm that the employed ARIMA models are adequately calibrated and 

capable of effectively capturing the underlying dynamics of the climatic variables. 

The similarity in the goodness of fit coefficients for both variables suggests that the artificial intelligence 

methodology applied, specifically the ARIMA models, is extremely effective for climate analysis in this region. 

The precision of these models is crucial for making reliable forecasts that can support strategic planning and 

decision-making in the context of climate change [69]. 

The effectiveness of artificial intelligence in predicting climatic patterns offers significant advantages for 

environmental planning and management. With accurate forecasts, planners can better prepare communities for 

extreme weather events and manage natural resources more effectively, which is vital in regions prone to intense 

climatic variations like the Ecuadorian coast [70], [71]. 
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In the present study, ARIMA models were applied to predict maximum temperature and relative humidity on 

the Ecuadorian coast, obtaining significant results regarding the inverse relationship between these climatic 

variables. To contextualize and validate these findings, a comparison was made with similar studies in the 

literature that have used advanced statistical approaches and artificial intelligence techniques to model and 

predict climatic variables. Below is a comparative table summarizing the main relevant studies, the models used, 

and the key results, which allows us to discuss the coherence and differences between studies, as well as explore 

the implications of the obtained results. 

Table 4. Comparative analysis of predictive models for temperature and humidity 

Research topic Studied variable Model used Key results 

Stochastic modeling and 

forecasting of relative 

humidity and wind speed for 

different zones of Kerala 

Relative 

humidity and 

wind speed 

Stochastic 

models 

Accurate predictions of relative 

humidity and wind speed in different 

areas of Kerala, India [72]. 

The Investigation and 

Forecasting of Relative 

Humidity Variation of Pars 

Abade-Moghan, North-West 

of Iran, by ARIMA Model 

Relative 

humidity in Pars 

Abad-e-Moghan 

ARIMA 

Effective ARIMA model for 

forecasting relative humidity 

variations in northwest Iran [73]. 

Modeling and Controlling of 

Temperature and 

Humidity in Building 

Heating, Ventilating, and Air 

Conditioning System Using 

Model Predictive Control 

Temperature and 

humidity 

Model 

Predictive 

Control (MPC) 

The proposed MPC approach 

optimizes the control of temperature 

and humidity, improving energy 

efficiency and comfort levels [74]. 

Model Predictive 

Temperature and Humidity 

Control of Greenhouse with 

Ventilation 

Temperature and 

absolute 

humidity 

Model 

Predictive 

Control (MPC) 

MPC reduced the RMS error of 

temperature and humidity deficit to 

23.5% and 13.1%, respectively, 

improving plant growth efficiency 

[75]. 

Models for Prediction of 

Daily Mean Indoor 

Temperature and Relative 

Humidity: Education 

Building in Izmir, Turkey 

Indoor 

temperature and 

relative humidity 

Artificial 

Neural Network 

(ANN) and 

multiple 

regression 

ANN models showed better 

performance than multiple regression 

for predicting indoor temperature and 

humidity in educational buildings, 

with high R² values (0.94 for 

temperature and 0.96 for humidity) 

[76]. 

Integration of extreme 

gradient boosting feature 

selection approach with 

machine learning models: 

application of weather 

relative humidity prediction 

Relative 

humidity at Kut 

and Mosul 

stations, Iraq 

XGBoost 

feature 

selection with 

SVR, RF, and 

MARS 

Random forest (RF) model yielded 

the best prediction at Kut station with 

RMSE = 4.92, while MARS model 

performed best at Mosul station with 

RMSE = 3.80 [77]. 

When comparing the results of this study with those from previous research (Table 4), significant similarities 

and differences are identified regarding the predictive models used to estimate temperature and relative 

humidity. 

In terms of relative humidity and wind speed prediction, Gokul, Mehta, and Rail [72] applied stochastic models, 

obtaining accurate predictions for different zones of Kerala. The ARIMA models used in the study on the 
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Ecuadorian coast also provided reliable predictions, highlighting the robustness of this approach in 

environments with moderate climate variability. However, stochastic models might be better suited to capture 

random fluctuations that ARIMA models may not fully represent. 

On the other hand, Shiri et al. [73] also used the ARIMA model to predict variations in relative humidity in Iran, 

with results similar to those of the present study. Both works corroborate ARIMA’s capacity to identify trends 

and seasonality in relative humidity time series. Nevertheless, it is acknowledged that this model presents 

limitations in predicting sudden changes or extreme weather events. 

In the study by Bahramnia et al. [74] model predictive control (MPC) optimized the control of temperature and 

humidity in HVAC systems, achieving improvements in energy efficiency and comfort. Although the 

Ecuadorian study does not focus on control system applications, the analysis of interactions between 

temperature and relative humidity through ARIMA compares favorably in terms of overall accuracy. However, 

MPC could be more effective in contexts where climate control optimization is critical. 

Ito and Tabei [75] employed MPC for greenhouses, significantly reducing the error in temperature and humidity 

deficit predictions. In contrast, the results obtained with ARIMA on the Ecuadorian coast focused more on long-

term trend prediction, limiting its applicability in scenarios that require precise climate control, such as 

greenhouses. 

Likewise, Özbalta et al. [76] used artificial neural networks (ANN) and multiple regression to predict 

temperature and humidity in educational buildings, achieving more precise adjustments than ARIMA models. 

This suggests that, in more complex contexts, ANN models could outperform ARIMA, highlighting the need to 

consider more advanced approaches in future studies on the Ecuadorian coast. 

Finally, Tao et al. [77] demonstrated the effectiveness of machine learning techniques such as XGBoost, SVR, 

RF, and MARS in predicting relative humidity. The RF model outperformed ARIMA in the present study, 

indicating that using machine learning-based approaches could improve the accuracy of climate predictions in 

coastal regions. 

5. Conclusion 

The study has demonstrated, through the use of advanced artificial intelligence techniques, how maximum 

temperature and relative humidity are interrelated on the coast of Ecuador. Through comprehensive analysis, 

which included the application of ARIMA models and the evaluation of their residuals, the reliability of these 

techniques for predicting climatic changes has been validated. The inverse correlation between maximum 

temperature and relative humidity, particularly pronounced from 33°C onwards, highlights how relative 

humidity varies in response to temperature increases, aligning with previous studies that attribute these changes 

to the ability of warm air to retain more water vapor. 

The selected ARIMA models have provided a robust framework for understanding the dynamics of temperature 

and humidity in a highly variable environment. The goodness of fit coefficients and Ljung-Box tests have 

corroborated the absence of significant autocorrelations in the residuals, suggesting that these models adequately 

capture the inherent variability of these climatic phenomena. This is reflected in the consistency of indicators 

such as ME, RMSE, MAE, and MAPE, which show that both temperature and humidity can be forecasted with 

a high degree of accuracy. 

This study underscores the need for climate change adaptation policies that consider these interactions between 

temperature and humidity. The ability to foresee extreme conditions is crucial for agricultural planning, water 

resource management, and public health, especially in a region susceptible to the impacts of climate change. 

Predictive models, by offering reliable and detailed forecasts, become valuable tools for decision-making 

regarding infrastructure, emergency response, and sustainable development strategies. 
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Given that only a small percentage of the variability in relative humidity was explained by changes in maximum 

temperature, it is recommended to explore other factors that could influence these variables. This could include 

more detailed studies on precipitation patterns, changes in vegetation cover, and human activities that alter local 

conditions. Additionally, it is suggested to increase the sample size or use models that integrate more climatic 

variables to improve the accuracy of the predictions. 

Among the most significant limitations of this study is that the variability in relative humidity was only partially 

explained by changes in maximum temperature. This suggests the probable influence of other factors not 

considered in the model, which reduces its predictive capacity when only two climatic variables are taken into 

account. Moreover, while the sample size is adequate for the objectives set, it may not be sufficient to accurately 

capture seasonal fluctuations or extreme weather events. The absence of other relevant variables, such as wind 

speed, solar radiation, or precipitation levels, may limit a deeper understanding of the climatic interactions in 

the region under study. 

In future research, it is essential to expand the analysis by incorporating a larger number of climatic variables 

that may affect the relationship between temperature and humidity, such as precipitation patterns, changes in 

vegetation cover, and human activities that modify local microclimatic conditions. Additionally, increasing the 

sample size would allow for the inclusion of longer climatic periods, thereby strengthening the robustness of 

the models and providing better insights into the long-term dynamics of the phenomena analyzed. Finally, it is 

suggested to explore more complex predictive models, such as non-linear or hybrid approaches, which combine 

various prediction techniques to enhance accuracy in forecasting climatic events in areas particularly vulnerable 

to the effects of climate change. 
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