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Accepted Oct. 03,2024  Artificial intelligence (Al) has established itself as an essential tool in climatology.

It facilitates accurate analysis and prediction of variables such as temperature and
humidity, which are crucial for understanding global warming and its effects. In
this context, this study aims to implement predictive simulations of temperature
and relative humidity on the Ecuadorian coast using artificial intelligence (Al).
This study adopts a quantitative methodology, utilizing daily historical data
collected from 2015 to 2020. Monthly averages for maximum temperature and
relative humidity were calculated, based on 72 observations for each variable. The
climate simulation employed statistical techniques such as linear regression and
simple correlation, along with the implementation of various Al libraries in
Rstudio, including readxl, QuantPsyc, and ggplot2, among others. Additionally, the
ARIMA model was applied to analyze time series, facilitating detailed simulation
and prediction of both climatic variables. The results indicate a significant inverse
correlation between maximum temperature and relative humidity, revealing high-
temperature variability in recent years. The optimized ARIMA predictive models
showed AICC indices of 180.47 for temperature and 283.16 for humidity, after 96
iterations, demonstrating the high reliability of Al in climate prediction for the
Ecuadorian coastal region. The study concludes with the importance of integrating
advanced technologies such as Al in climatology to improve the accuracy and
efficiency of climate predictions.
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1. Introduction

Modeling and predicting climatic conditions through artificial intelligence (Al) are essential tools for studying
and understanding the effects of seasonal variations across multiple time scales. There are notable advances in
research in this field [1], [2]. However, significant deficiencies are observed in the integration and
comprehensive analysis of multivariable data, such as relative humidity and temperature, covering extended
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periods. The application of machine learning techniques still requires further development and tuning to enhance
the accuracy and applicability of predictive models in various climatic contexts [3]. These improvements are
vital for a more accurate assessment of future climate patterns and for effectively responding to emerging
environmental challenges.

The use of Al tools, particularly the programming language RStudio, has proven effective in quantifying and
modeling the behavior of important climatic variables like relative humidity. These tools provide crucial means
for the detailed analysis of climatic trends and patterns [4]. Nevertheless, it is critical to expand research to
establish an effective correlation between these data and other determining climatic factors, especially
temperature, whose variations are key to understanding the dynamics of climate change [5], [6].

The study of relative humidity and temperature is of fundamental importance due to their direct impact on the
planet's energy balance and their influence on critical areas such as resource management, agriculture, and
public health [7]. A deep understanding of these factors is essential to adapt to the adverse effects of climate
change and to formulate and implement effective sustainability policies. The interaction of these climatic
elements determines environmental patterns that affect biodiversity and ecosystems, imposing significant
pressures on economic and social systems. Thus, deepening their study not only helps mitigate risks but also
plans future interventions to ensure long-term sustainable development.

Acrtificial intelligence has revealed a slow and steady increase in the mean air temperature over recent years [6],
[8]. SARIMA models, adjusted to datasets of maximum temperature, have proven suitable through diagnostic
verification of correlation using ACF, PACF, IACF, and p-values from the residual statistics of the Ljung-Box
test [9], [10], [11]. The model parameters are obtained using the maximum likelihood method, assisted by
information criteria such as Akaike (AIC), Bayesian (BIC), and corrected Akaike (AlICc) [12], [13], [14].

From previous studies on the simulation and prediction of climatic variables like maximum temperature and
relative humidity, the relevance of these indicators in understanding the impact of climate change stands out
[15], [16], [17]. The application of artificial intelligence (Al) facilitates the automatic selection of predictive
models and the adjustment of parameters, thus optimizing the accuracy of climate predictions [18], [19]. In this
context, the following hypotheses have been formulated for the current research:

H1: There is an inverse correlation between relative humidity and maximum temperature, suggesting that
variations in one could inversely influence the other.

H2: Artificial intelligence selects the best predictive model for maximum temperature, adjusting parameters to
maximize accuracy and capture the observed positive trend and seasonality.

H3: Similarly, Al selects the best predictive model for relative humidity, ensuring that parameter adjustments
adequately reflect a positive trend and seasonality.

Therefore, the main objective of this study was to implement predictive simulations of temperature and relative
humidity on the Ecuadorian coast using artificial intelligence (Al), in order to explore the interaction between
these variables and evaluate their impact on the region’s climate dynamics.

2. Theoretical foundations

2.1. Importance of temperature and relative humidity in climatic studies

Temperature and relative humidity are crucial parameters in climatic research, as they directly influence
biodiversity, agriculture, public health, and water resource management [20], [21], [22]. A detailed analysis of
these variables is essential for understanding climate changes and their effects on specific ecosystems.

2.2. Application of artificial intelligence in meteorology

Al has revolutionized the field of meteorology, facilitating the modeling and prediction of climatic variables
with high precision [23], [24]. Al's ability to process large volumes of data and recognize complex patterns

672



HSD Vol. 6, No. 2, October 2024, pp.671- 688

enables the prediction of meteorological phenomena in advance, which is crucial for planning and responding
to emergencies [25], [26].

2.3. Predictive models in climatology

Within the realm of climate prediction, time series models such as ARIMA and SARIMA are widely used due
to their ability to adjust and forecast trends based on historical data [27], [28]. The selection of the most suitable
model is verified using statistical criteria such as the AIC, BIC, and Ljung-Box tests, which assess the model's
suitability based on correlation and residuals [29], [30].

2.4. Artificial intelligence in predicting temperature and relative humidity

Specifically, in predicting temperature and relative humidity, Al has proven to be an effective tool for capturing
and modeling the environmental dynamics of these variables. Studies show that while neural networks have
been effective in reproducing patterns of relative humidity, there are still challenges in predicting long-term
trends [31], [32]. Additionally, the accuracy of hourly and daily predictions using metrics such as MAPE and
RMSE, are key indicators of predictive accuracy [33], [34].

3. Methodology
3.1. Methodological approach

This research adopts a quantitative approach, characterized by being both retrospective, as it is based on
historical data, and prospective, by making short-term predictions. Artificial intelligence is used to simulate and
predict critical climatic variables, specifically maximum temperature and relative humidity on the coast of
Ecuador.

3.2. Data collection

The climatic data analyzed in this study include maximum temperature, recorded in degrees Celsius, and relative
humidity, reported in percentage. These were obtained from the meteorological station of the Escuela Superior
Politécnica Agropecuaria de Manabi (ESPAM) from the beginning of 2015 to the end of 2020. A total of 13,140
observations were recorded, divided into three periods of the day: morning, midday, and evening. Subsequently,
Excel was used to calculate the daily and monthly average of each variable, resulting in 72 monthly observations
for each.

3.3. Analysis tools

For statistical analysis and modeling, Al-adapted packages and libraries in RStudio were used, including readxl,
QuantPsyc, psych, GGally, xts, ggplot2, tidyverse, colourpicker, and psych for linear regression and correlation
analysis. For autoregressive integrated moving average (ARIMA) modeling, packages such as report, reshape2,
feasts, fabletools, Ifable, tsibble, fpp2, dplyr, lubridate, tidyr, tseries, forecast, and astsA were employed.

3.4. Statistical tests and diagnostics

The augmented Dickey-Fuller test was performed to assess the stationarity of the time series, and Ljung-Box
and Bartlett tests were used to analyze the autocorrelation (white noise) and the homogeneity of the variances
(homoscedasticity), respectively. The normality of the distributions was verified using the Kolmogorov-
Smirnov test. These tests are fundamental for the training, calibration, and evaluation of the models with a 95%
confidence interval [35].

3.5. Time series models and model evaluation

Auto-correlograms of the partial autocorrelation function (PACF) and simple (ACF) were analyzed to determine
the suitability of time series models, mainly the SARIMA model, which considers components of seasonality
and trend. The goodness of fit parameters such as the mean absolute percentage error (MAPE), the mean squared
error (MSE), and the stationary correlation were calculated to measure the model's effectiveness in relation to
observed values [36], [37]. Additionally, the accuracy of the selected model was evaluated using the Akaike
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Information Criterion (AIC and AlCc) [38], [39], [40], providing a reliable estimate of the quality of the adjusted
model.

4, Results and discussion

This section presents the results obtained through statistical analysis using artificial intelligence to assess
maximum temperature (°C) and relative humidity (%) on the coast of Ecuador. The results are displayed through
various tables and statistical figures, which facilitate the interpretation of the relationships between the studied
variables.
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Figure 1. Dynamics of relative humidity in relation to maximum temperature

The chart presented illustrates an inverse correlation between maximum temperature and relative humidity on
the Ecuadorian coast during the period 2015-2020. We observe that as maximum temperature increases, the
percentage of relative humidity decreases. This pattern becomes more pronounced from 33°C onwards,
coinciding with a noticeable decrease in humidity and an increase in the dispersion of humidity values observed
in recent years.

Several studies have documented that variations in temperature can significantly influence relative humidity
due to the capacity of warm air to contain more water vapor than cold air [41], [42], [43]. Moreover, an increase
in temperature is linked with more erratic humidity patterns, reflecting a complex and multifaceted interaction
between these climatic elements [44].

The application of robust statistical models has allowed for the quantification of this relationship, revealing that
the variability of relative humidity intensifies with the increase of extreme temperatures. This phenomenon
underscores the importance of monitoring and understanding climate dynamics in coastal areas, which are
particularly vulnerable to the effects of climate change [45]. This analysis provides crucial evidence for the
formulation of climate change adaptation policies, especially in preparation for more extreme conditions that
could affect both the ecosystem and local communities.

Next, Figure 2 presents a detailed statistical analysis that quantifies the relationship between maximum
temperature and relative humidity in a specific context. Through the application of a linear model, this
analysis attempts to discern the degree of influence that temperature may have on humidity in a controlled
environment.
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Call:
Im(formula = Relative_humidity ~ Temperature, data = correlations1,
na.action = na.exclude)

Residuals:
Min 1Q Median 3Q Max
-7.5625-2.3781 0.3908 1.7974 8.7974

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 107.7968 13.2093 8.161 9.24e-12 ***
Temperature -0.7555 0.3882 -1.946 0.0556.

Signif. codes: 0 “***" 0,001 ‘**’ 0.01“*’ 0.0570.1°"1

Residual standard error: 3.01 on 70 degrees of freedom
Multiple R-squared: 0.05134, Adjusted R-squared: 0.03778
F-statistic: 3.788 on 1 and 70 DF, p-value: 0.05564

Figure 2. Climate model coefficients and goodness of fit tests

Figure 2 presents the analysis of the coefficients and goodness of fit tests for a climate model that assesses the
relationship between relative humidity and maximum temperature. The adjusted model shows that the intercept
is statistically significant at the 0.1% level (p = 0.000942, t = 8.161), suggesting that when the maximum
temperature is zero, the expected value of relative humidity is approximately 107.8%. However, this is
theoretically impossible given the actual physical conditions, indicating possibly an inappropriate extrapolation
of the model or the need for an adjustment in the temperature scale.

On the other hand, the coefficient associated with maximum temperature is -0.7555, with a p-value of 0.0556.
This value is marginally above the conventional threshold of 0.05, suggesting a negative trend between
temperature and relative humidity, although this relationship does not reach statistical significance at the 5%
level. This may indicate a weak relationship or the need for more data to confirm this effect. The model has an
adjusted R-squared of 0.0377, indicating that only 3.77% of the variability in relative humidity is explained by
variations in maximum temperature. This suggests that other factors not included in the model may be
influencing relative humidity [46]. The F-statistic of 3.788 with a p-value of 0.0556 reflects that the model is
marginally significant at the global level. That is, a p-value close to the threshold of 0.05 may require a more
careful evaluation of the statistical power and sample sizes used in the analysis [47], [48].

Augmented Dickey-Fuller Test
data: series_tmaxima
Dickey-Fuller » -3,2262, Lag order = 4, p-value = 0.09057
alternative hypothesis: stationary
> adf test(Diferl)
Auguented Dickey-Fuller Test
data: Diferl
Dickey-Fuller = -6.2989, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

In adf.test(Diferl) : p-value smaller than printed p-value
> #fempleamos el test de dickey fuller
> adf.test(series_humedadre)

Augmented Dickey-Fuller Test
data: series_humedadre
Dickey-Fuller = -3.236, Lag order = 4, p-value = 0.08899
alternative hypothesis: stationary
> adf.test(diferenciashr)
Augmented Dickey-Fuller Test
data: diferenciashr

Dickey-Fuller = -4,5549, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

Figure 3. Dickey-Fuller test from non-stationary to stationary for temperature and relative humidity
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In Figure 3, the results of the augmented Dickey-Fuller test are presented and applied to assess the stationarity
of the time series for maximum temperature and relative humidity. This analysis is crucial for identifying the
presence of trends or seasonality in the time series, critical aspects for adequately modeling climatic phenomena.

Initially, the tests revealed that both the maximum temperature series and the relative humidity series were non-
stationary, with p-values greater than 0.05, indicating the presence of trends and/or seasonal components in the
data. This non-stationarity implies that the means and variances of the series can change over time, affecting
the accuracy of predictions if not properly handled [49].

To transform the series into stationary ones, a first difference was applied to each series (denoted as Differl for
temperature and differences for relative humidity). The results after this transformation showed p-values less
than 0.05, indicating that the differenced series is stationary and, therefore, suitable for future analysis and
modeling.

The transformation of series from non-stationary to stationary is crucial for the application of predictive models
like ARIMA, which assume stationarity in the data. By ensuring that the series are stationary, the reliability of
the forecasting models is improved [50]. This step is essential to avoid erroneous inferences and improve the
accuracy in predicting climatic phenomena.

The need to differentiate time series to achieve stationarity is a common step in the analysis of climatic time
series, as demonstrated by previous studies [51]. Applying these techniques facilitates the identification of
underlying patterns and responding to questions about climate dynamics and its potential impact, especially in
sensitive areas like the Ecuadorian coast.

Table 1. Simulations and iterations of temperature and relative humidity through artificial intelligence

Maximum Temperature Simulations (°C) Relative Humidity Simulations (%)

N° Number of iterations N° Number of iterations

1 ARIMA(0,1,0)(0,1,0)[12] : 220.7055 1 ARIMA(0,1,0)(0,1,0)[12] : 317.106
2 ARIMA(0,1,0)(0,1,1)[12] : 209.9701 2 ARIMA(0,1,0)(0,1,1)[12] : 297.2272
3 ARIMA(0,1,0)(0,1,2)[12] : 212.1899 3 ARIMA(0,1,0)(0,1,2)[12] : 299.1942
4 ARIMA(0,1,0)(1,1,0)[12] : 216.0152 4 ARIMA(0,1,0)(1,1,0)[12] : 300.7595
5 ARIMA(0,1,0)(1,1,1)[12] : 212.191 5 ARIMA(0,1,0)(1,1,1)[12] : 299.1541
14 ARIMA(0,1,1)(1,1,1)[12] : Inf 14 ARIMA(0,1,1)(1,1,1)[12] : Inf
15 ARIMA(0,1,1)(1,1,2)[12] : Inf 15 ARIMA(0,1,1)(1,1,2)[12] : Inf
16 ARIMA(0,1,1)(2,1,0)[12] : 180.4718 16 ARIMA(0,1,1)(2,1,0)[12] : 283.8902
17 ARIMA(0,1,1)(2,1,1)[12] : 182.1128 17 ARIMA(0,1,1)(2,1,1)[12] : Inf
38 ARIMA(1,1,0)(0,1,1)[12] : Inf 38 ARIMA(1,1,0)(0,1,1)[12] : Inf
39 ARIMA(1,1,0)(0,1,2)[12] : 193.4651 39 ARIMA(1,1,0)(0,1,2)[12] : 283.2629
88 ARIMA(3,1,1)(0,1,0)[12] : 202.0975 40 ARIMA(1,1,0)(1,1,0)[12] : 286.3039
89 ARIMA(3,1,1)(0,1,1)[12] : Inf 41 ARIMA(1,1,0)(1,1,1)[12] : 283.1664
90 ARIMA(3,1,1)(1,1,0)[12] : Inf 42 ARIMA(1,1,0)(1,1,2)[12] : Inf
91 ARIMA(3,1,2)(0,1,0)[12] : Inf 91 ARIMA(3,1,2)(0,1,0)[12] : 308.273
92 ARIMA(4,1,0)(0,1,0)[12] : 202.416 92 ARIMA(4,1,0)(0,1,0)[12] : 306.392
93 ARIMA(4,1,0)(0,1,1)[12] : Inf 93 ARIMA(4,1,0)(0,1,1)[12] : Inf
94 ARIMA(4,1,0)(1,1,0)[12] : 193.9918 94 ARIMA(4,1,0)(1,1,0)[12] : 288.8698
95 ARIMA(4,1,1)(0,1,0)[12] : 204.7369 95 ARIMA(4,1,1)(0,1,0)[12] : 308.5597
96 ARIMA(5,1,0)(0,1,0)[12] : 204.823 96 ARIMA(5,1,0)(0,1,0)[12] : 307.6009
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In Table 1, the process of model selection through the use of the auto.arima function of Al is displayed, which
performed 96 iterations to identify the optimal models for maximum temperature and relative humidity on the
coast of Ecuador. This automated approach is essential for adjusting time series models that adequately
capture the climatic dynamics of the region.

For maximum temperature, artificial intelligence selected the thirteenth iteration, corresponding to the ARIMA
model (0,1,1)(2,1,0). This model indicates that after applying one non-seasonal differentiation and another
seasonal differentiation, the best approach to capture the seasonality and trend of temperature includes one
moving average term in the non-seasonal component and two moving average terms in the seasonal component
with annual periodicity. The choice of this model suggests that maximum temperature exhibits clear seasonal
patterns, which is consistent with observations of meteorological phenomena that show regular annual
fluctuations [52], [53].

For relative humidity, the selected model was ARIMA (1,1,0)(1,1,1) in iteration forty-one. This model combines
an autoregressive term and a moving average term in its seasonal and non-seasonal components, which is
indicative that relative humidity presents both seasonality and abrupt changes in the mean, required to
adequately model its volatile behavior and variations throughout the year.

The selection of these models by artificial intelligence reflects the presence of seasonality, trend, autoregression,
and abrupt changes in the mean of the analyzed time series. These elements are crucial for understanding and
predicting climatic conditions in the region, which has direct implications for agricultural planning, water
resource management, and adaptation to climate change [54], [55]. Furthermore, the use of advanced predictive
models, like those based on artificial intelligence, must be guided by a strong ethical framework to ensure the
responsible handling of data and decision-making processes. In other fields, such as accounting, ethical
responsibility is fundamental to ensuring the integrity of information used in critical decision-making [56].

> print(simulaciontm)

e eand s Series: series_humedadre
Series: ser 1es_tmaxima

ARTMA(0,1,1)(2,1,0) [12] ARIMA(1,1,0)(1,1,1)[12]
coefficients: Coefficients:
mal sarl sard arl sarl smal
“0.8515 -0.6948 -0.5334 -0.5241 -0.1709 -0.8129

s-e. 0.095 0.1372 0.1273 s.e.  0.1117 0.2229 0.5394

sigmar? = 0.9257: Tlog likelihood = -85.87 . . . _

AIC=179.73  AICc=180.47 BIC=188.04 sigmar2 = 4.966: Tog likelihood = -137.21

> ##se realiza una revision de los residuales del mo ATC=282.43 AICc=283.17 BIC=290.74

delo > ##se realiza una revision de los residuales del modelo

> residuales<-checkresiduals(simulaciontm) N . LT e
resTttaTess et actond > residuales<-checkresiduals(simulacionHr)

Ljung-Box test i
Ljung-Box test
data: Residuals from ARIMA(0,1,1)(2,1,0)[12]

Q* = 10.413, df = 11, p-value = 0.4937 data: Residuals from ARIMA(1,1,0)(1,1,1)[12]

model df: 3. Total lags used: 14 Q* = 9.0059, df = 11, p-value = 0.6213

> Box.test(simulaciontm,type = "Ljung-Box™) Model df: 3. Total lags used: 14

Figure 4. Simulations of maximum temperature and relative humidity on the coast of Ecuador

Figure 4 illustrates the validation of the ARIMA models generated for maximum temperature and relative
humidity on the Ecuadorian coast, using the maximum likelihood technique. These models have been selected
through a rigorous statistical process that includes the optimization of criteria such as Akaike Information
Criterion (AIC), corrected Akaike (AlCc), and Bayesian Information Criterion (BIC).

The ARIMA (0,1,1)(2,1,0) model applied to maximum temperature exhibits excellent statistical performance.
The AIC values of 179.73 and AlICc of 180.47 indicate proper model fit, while the BIC of 188.04 confirms the
model's efficiency in terms of penalty for the number of parameters. The Ljung-Box test for the model's residuals
shows a p-value of 0.4937, indicating that there is no significant autocorrelation in the residuals, and the model
adequately captures the dependency structure in the maximum temperature data [57].
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On the other hand, relative humidity is modeled with an ARIMA (1,1,0)(1,1,1). The Akaike and Bayesian
criteria also indicate excellent model fit and efficiency, with AlICc values of 283.17 and BIC of 290.74. Similar
to the maximum temperature model, the Ljung-Box test yields a p-value of 0.6213 for the residuals, suggesting
the absence of residual autocorrelation and confirming that the model is appropriate for relative humidity data.

The confirmation of these models' validity through Ljung-Box tests and information criteria indicates that both
models are robust and reliable for simulating and predicting climatic conditions. The absence of residual
autocorrelation and the adequate capture of the seasonality and underlying trend in the data is essential for
making reliable projections that can inform climate change adaptation policies and natural resource management
strategies [58], [59].

Residuals from ARIMA(0,1,1)(2,1,0)[12]

Lég - re?SlduaISl
Residuals from ARIMA(1,1,0)(1,1,1)[12]
—mAMA MV
g T ”H'”l}l“”' €.
L;ag | - . reé;duals

Figure 5. Residual simulations of maximum temperature and relative humidity on the coast of Ecuador

Figure 5 illustrates the analysis of the residuals derived from the ARIMA models selected for maximum
temperature and relative humidity. Residuals are crucial for validating the quality of a time series model, as they
indicate the amount of information not explained by the model.

The residuals of the ARIMA (0,1,1)(2,1,0) model for maximum temperature show fluctuations that appear not
to present clear systematic patterns over time, which is a positive indicator of the model's adequacy. The
autocorrelation chart (ACF) for these residuals indicates that all autocorrelations are within the confidence
limits, suggesting that there are no significant autocorrelations in the residuals and that the model has adequately
captured the dependency structure in the data.

The distribution of the residuals, represented in the density plot, approximates a normal distribution, which is
corroborated by the red fit line. This normality is consistent with the underlying assumptions of many statistical
tests used for subsequent inferences, strengthening the reliability of the predictions generated by the model [60],
[61].

For relative humidity, the ARIMA (1,1,0)(1,1,1) model also shows residuals without clear patterns of
autocorrelation over time, as observed in its respective time graph and ACF. This indicates that the model is
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effective in modeling relative humidity without leaving unexplained autocorrelations [62]. Similar to maximum
temperature, the histogram of the residuals with its corresponding normal curve fit shows that the residuals are
distributed approximately normally, fulfilling another key assumption for the validation of the statistical model.

The normality and absence of autocorrelation in the residuals are indicative that the models are adequate and
complete, which is essential for making accurate and reliable predictions. These results allow researchers and
planners to use these models to predict maximum temperature and relative humidity with greater confidence,
facilitating planning in response to variable climatic conditions [63].

Table 2. Forecasts for maximum temperature and relative humidity from 2021 to 2024

Maximum temperature forecasts (°C) Forecasts relative humidity (%)
Months/years Forecast Forecast Lo 95 Forecast Hi 95 Forecast Forecast Lo 95 Forecast Hi 95
1/1/2021 34.22623 32.34050 36.11196 82.24920 77.76913 86.72928
1/2/2021 32.96561 31.05921 34.87201 84.35447 79.39970 89.30925
1/3/2021 34.41416 32.48731 36.34101 83.83164 77.85977 89.80351
1/4/2021 34.40953 32.46245 36.35662 81.89022 75.33782 88.44261
1/5/2021 33.85094 31.88382 35.81805 82.03950 74.82015 89.25886
1/6/2021 33.37188 31.38494 35.35882 82.59960 74.83609 90.36310
1/7/2021 33.69443 31.68786 35.70100 82.37683 74.07256 90.68109
1/8/2021 34.07857 32.05256 36.10458 80.87541 72.07983 89.67098
1/9/2021 34.57205 32.52678 36.61731 80.13996 70.87056 89.40937
1/10/2021 34.31540 32.25106 36.37974 80.29411 70.57908 90.00914
1/11/2021 33.87015 31.78691 35.95339 76.56523 66.42013 86.71033
1/12/2021 34.40621 32.30424 36.50818 78.76732 68.21476 89.31988
1/1/2022 33.92280 31.62391 36.22168 82.49701 71.47071 93.52330
1/2/2022 33.28387 30.95434 35.61340 84.14421 72.71959 95.56882
1/3/2022 34.91400 32.55422 37.27378 84.62481 72.80130 96.44831
1/4/2022 34.60193 32.21228 36.99157 81.35646 69.15425 93.55867
1/5/2022 33.77383 31.35469 36.19298 81.71447 69.14127 94.28766
1/6/2022 33.61321 31.16492 36.06149 82.48737 69.55579 95.41895
1/7/2022 33.35593 30.87884 35.83301 82.14921 68.86776 95.43066
1/8/2022 34.25003 31.74448 36.75559 80.21176 66.59030 93.83323
1/9/2022 34.28941 31.75570 36.82311 79.60676 65.65258 93.56093
1/10/2022 34.63012 32.06858 37.19167 79.39034 65.11272 93.66797
1/11/2022 33.44086 30.85177 36.02994 75.95817 61.36168 90.55466
1/12/2022 34.95471 32.33838 37.57105 78.63762 63.73402 93.54122
1/1/2023 34.41282 31.66793 37.15772 82.11471 66.66796 97.56147
1/2/2023 33.61251 30.83195 36.39308 83.83999 68.01725 99.66272
1/3/2023 35.09785 32.28206 37.91363 84.14924 67.90221 100.39627
1/4/2023 34.56281 31.71223 37.41338 81.10756 64.47666 97.73846
1/5/2023 34.23050 31.34556 37.11544 81.42993 64.40871 98.45115
1/6/2023 33.66882 30.74992 36.58772 82.16646 64.77155 99.56137
1/7/2023 33.40578 30.45331 36.35826 81.84802 64.08307 99.61298
1/8/2023 34.29448 31.30881 37.28015 79.98507 61.86013 98.11002
1/9/2023 34.26128 31.24278 37.27978 79.35778 60.87794 97.83762
1/10/2023 34.82784 31.77686 37.87881 79.20468 60.37882 98.03054
1/11/2023 33.56312 30.48001 36.64622 75.72181 56.55287 94.89076
1/12/2023 34.36411 31.24920 37.47902 78.31970 58.81969 97.81971
1/1/2024 34.34576 30.80408 37.88744 81.83995 61.82055 101.85936
1/2/2024 33.31949 29.72251 36.91646 83.55189 63.15053 103.95325
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Maximum temperature forecasts (°C) Forecasts relative humidity (%)
Months/years Forecast Forecast Lo 95 Forecast Hi 95 Forecast Forecast Lo 95 Forecast Hi 95
1/3/2024 34.80277 31.15133 38.45421 83.89042 63.06977 104.71106
1/4/2024 3457774 30.87264 38.28284 80.81001 59.60145 102.01857
1/5/2024 34.06454 30.30655 37.82254 81.13847 59.53709 102.73985
1/6/2024 33.59562 29.78546 37.40578 81.88121 59.90027 103.86216
1/7/2024 33.64566 29.78404 37.50727 81.55941 59.20194 103.91687
1/8/2024 34.26586 30.35346 38.17825 79.68372 56.95809 102.40936
1/9/2024 34.52242 30.55989 38.48495 79.06024 55.97054 102.14995
1/10/2024 34.62243 30.61040 38.63446 78.89632 55.45039 102.34225
1/11/2024 33.80401 29.74308 37.86494 75.42212 51.62180 99.22243
1/12/2024 34.55020 30.44095 38.65945 78.03394 53.89083 102.17705

Table 2 presents the forecasts for maximum temperature and relative humidity on the coast of Ecuador, derived
from the ARIMA (0,1,1)(2,1,0) model for temperature and an analogous model for humidity. These forecasts
cover the period from 2021 to 2024 and highlight the observed variability across different seasons, a direct
reflection of regional climatic patterns.

The analysis reveals significant seasonal fluctuations in temperature. For the year 2023, a maximum temperature
of 35.09 °C is forecasted during the rainy season, demonstrating high thermal variability with a range dropping
to 32.96 °C in 2021. This variation of 2.13 °C between annual extremes underscores the influence of seasonal
meteorological phenomena and their impact on regional temperatures.

Regarding relative humidity, the data projects a maximum peak of 84.62% during the winter season, while the
lowest recorded value is 75.42% during the dry season. The observed variability of 9.20% in relative humidity
between these seasons reflects environmental responses to changes in precipitation and temperatures.

Forecasts based on ARIMA models are valuable tools for climatic and environmental planning, especially in
regions susceptible to significant climatic variations like the Ecuadorian coast. According to studies, the ability
to foresee fluctuations in temperature and humidity is crucial for agriculture, water resource management, and
public health [64], [65].

Furthermore, the predictive capacity of ARIMA models, particularly in seasonal configurations, allows planners
and scientists to anticipate adverse conditions and design appropriate mitigation strategies. The accuracy of
these models, as reflected in the confidence intervals and close adherence to historical patterns, strengthens
confidence in their practical utility.

Expresado en Porcentaje

Expresado en centigrados

Figure 6. Predictive models for temperature and humidity on the coast of Ecuador

Figure 6 presents the predictive models for maximum temperature and relative humidity on the Ecuadorian
coast, extending up to 2024. These models offer a clear visualization of the projected trends and expected
fluctuations in both climatic variables over time, allowing for an accurate interpretation of their future behavior
under changing climatic conditions.
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The model for maximum temperature shows a generally stable trend with significant fluctuations throughout
the year, which is typical in tropical regions where interannual variability may be minimal but intra-annual
variations are pronounced. The graphical representation includes a confidence interval, denoted by the shaded
area, which provides an estimate of the uncertainty associated with the predictions. This feature is crucial for
proper planning in response to heatwaves or unusually cold periods that could impact agriculture and public
health [66].

As for relative humidity, the model predicts a gradual decrease over the years, with a wide confidence interval
that reflects the uncertainty inherent in predicting this variable. This downward trend could be influenced by
factors such as rising temperatures and changes in precipitation patterns, suggesting the need for adaptation
strategies in sectors such as water management and agriculture to combat the effects of water stress.

The presented models are fundamental for strategic decision-making in natural resource management and urban
and rural planning. Understanding the variability and trends in these variables is essential for adapting to climate
change, especially in coastal regions susceptible to extreme climatic variations [67].

The ability to foresee changes in temperature and relative humidity in advance allows planners and authorities
to implement measures that mitigate the adverse impacts of climate change on local biodiversity, agricultural
production, and public health, as studies on the adaptation of ecosystems to changing climates suggest [68].

Table 3. Goodness of fit coefficients for simulation models of maximum temperature and relative humidity

Series: Maximum Temperature (°C): ARIMA(0,1,1)(2,1,0) [12]

Acronym ME RMSE MAE MPE MAPE MASE ACF1

Coefficients -0.1375942 0.8485132 0.6285502 -0.4349521 1.853311 0.6646636 -0.09364487

Series: Relative Humidity (%): ARIMA(L,1,0)(1,1,1) [12]

Acronym ME RMSE MAE MPE MAPE MASE ACF1

Coefficients 0.05574289 1,965356  1.525231 0.02668258 1.863756 0.5383169 -0.06588713

Table 3 provides a detailed assessment of the reliability of the predictive models for maximum temperature and
relative humidity on the coast of Ecuador, using key statistical indicators generated through artificial
intelligence. The results demonstrate notable consistency between the models for both climatic variables,
reflecting the robustness and precision of the modeling techniques employed.

Key indicators such as mean error (ME), root mean square error (RMSE), mean absolute error (MAE), mean
percentage error (MPE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and first
order autocorrelation of residuals (ACF1) exhibit values very close to zero, indicating a high degree of accuracy
in the predictions. These coefficients confirm that the employed ARIMA models are adequately calibrated and
capable of effectively capturing the underlying dynamics of the climatic variables.

The similarity in the goodness of fit coefficients for both variables suggests that the artificial intelligence
methodology applied, specifically the ARIMA models, is extremely effective for climate analysis in this region.
The precision of these models is crucial for making reliable forecasts that can support strategic planning and
decision-making in the context of climate change [69].

The effectiveness of artificial intelligence in predicting climatic patterns offers significant advantages for
environmental planning and management. With accurate forecasts, planners can better prepare communities for
extreme weather events and manage natural resources more effectively, which is vital in regions prone to intense
climatic variations like the Ecuadorian coast [70], [71].
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In the present study, ARIMA models were applied to predict maximum temperature and relative humidity on
the Ecuadorian coast, obtaining significant results regarding the inverse relationship between these climatic
variables. To contextualize and validate these findings, a comparison was made with similar studies in the
literature that have used advanced statistical approaches and artificial intelligence techniques to model and
predict climatic variables. Below is a comparative table summarizing the main relevant studies, the models used,
and the key results, which allows us to discuss the coherence and differences between studies, as well as explore
the implications of the obtained results.

Table 4. Comparative analysis of predictive models for temperature and humidity

Research topic Studied variable Model used Key results

SIOChaSFIC modelmg and Relative . Accurate predictions of relative
forecasting of relative o Stochastic - . -

. . humidity and humidity and wind speed in different
humidity and wind speed for . models .

. wind speed areas of Kerala, India [72].

different zones of Kerala
The Investigation and
Forecasting of Relative Relative Effective  ARIMA  model for
Humidity Variation of Pars humidity in Pars ARIMA forecasting relative humidity
Abade-Moghan, North-West ~ Abad-e-Moghan variations in northwest Iran [73].
of Iran, by ARIMA Model
Modeling and Controlling of
Temperature and Model The proposed MPC approach
Humidity in Building Temperature and Predictive optimizes the control of temperature
Heating, Ventilating, and Air humidity and humidity, improving energy

Conditioning System Using Control (MPC)

Model Predictive Control

efficiency and comfort levels [74].

Model Predictive MPC reduced the RMS error of

- Temperature and Model temperature and humidity deficit to
Temperature and Humidity . .
. absolute Predictive 23.5% and 13.1%, respectively,
Control of Greenhouse with . . . -
- humidity Control (MPC) improving plant growth efficiency
Ventilation
[75].
ANN  models showed better
Models for Prediction of Acrtificial performance than multiple regression
Daily Mean Indoor Indoor Neural Network for predicting indoor temperature and
Temperature and Relative temperature and (ANN) and humidity in educational buildings,
Humidity: Education relative humidity multiple with high R2? values (0.94 for
Building in Izmir, Turkey regression temperature and 0.96 for humidity)
[76].
Integration of extreme .

9 . . XGBoost Random forest (RF) model yielded
gradient boosting feature Relative - . :
selection anproach with humidity at Kut feature the best prediction at Kut station with
machine Iezrr)nin models: and I\)/qosul selection with RMSE = 4.92, while MARS model

. g ' . SVR, RF,and  performed best at Mosul station with
application of weather stations, Iraq

relative humidity prediction MARS RMSE = 3.80 [77].

When comparing the results of this study with those from previous research (Table 4), significant similarities
and differences are identified regarding the predictive models used to estimate temperature and relative
humidity.

In terms of relative humidity and wind speed prediction, Gokul, Mehta, and Rail [72] applied stochastic models,
obtaining accurate predictions for different zones of Kerala. The ARIMA models used in the study on the
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Ecuadorian coast also provided reliable predictions, highlighting the robustness of this approach in
environments with moderate climate variability. However, stochastic models might be better suited to capture
random fluctuations that ARIMA models may not fully represent.

On the other hand, Shiri et al. [73] also used the ARIMA model to predict variations in relative humidity in Iran,
with results similar to those of the present study. Both works corroborate ARIMA’s capacity to identify trends
and seasonality in relative humidity time series. Nevertheless, it is acknowledged that this model presents
limitations in predicting sudden changes or extreme weather events.

In the study by Bahramnia et al. [74] model predictive control (MPC) optimized the control of temperature and
humidity in HVAC systems, achieving improvements in energy efficiency and comfort. Although the
Ecuadorian study does not focus on control system applications, the analysis of interactions between
temperature and relative humidity through ARIMA compares favorably in terms of overall accuracy. However,
MPC could be more effective in contexts where climate control optimization is critical.

Ito and Tabei [75] employed MPC for greenhouses, significantly reducing the error in temperature and humidity
deficit predictions. In contrast, the results obtained with ARIMA on the Ecuadorian coast focused more on long-
term trend prediction, limiting its applicability in scenarios that require precise climate control, such as
greenhouses.

Likewise, Ozbalta et al. [76] used artificial neural networks (ANN) and multiple regression to predict
temperature and humidity in educational buildings, achieving more precise adjustments than ARIMA models.
This suggests that, in more complex contexts, ANN models could outperform ARIMA, highlighting the need to
consider more advanced approaches in future studies on the Ecuadorian coast.

Finally, Tao et al. [77] demonstrated the effectiveness of machine learning techniques such as XGBoost, SVR,
RF, and MARS in predicting relative humidity. The RF model outperformed ARIMA in the present study,
indicating that using machine learning-based approaches could improve the accuracy of climate predictions in
coastal regions.

5. Conclusion

The study has demonstrated, through the use of advanced artificial intelligence techniques, how maximum
temperature and relative humidity are interrelated on the coast of Ecuador. Through comprehensive analysis,
which included the application of ARIMA models and the evaluation of their residuals, the reliability of these
techniques for predicting climatic changes has been validated. The inverse correlation between maximum
temperature and relative humidity, particularly pronounced from 33°C onwards, highlights how relative
humidity varies in response to temperature increases, aligning with previous studies that attribute these changes
to the ability of warm air to retain more water vapor.

The selected ARIMA models have provided a robust framework for understanding the dynamics of temperature
and humidity in a highly variable environment. The goodness of fit coefficients and Ljung-Box tests have
corroborated the absence of significant autocorrelations in the residuals, suggesting that these models adequately
capture the inherent variability of these climatic phenomena. This is reflected in the consistency of indicators
such as ME, RMSE, MAE, and MAPE, which show that both temperature and humidity can be forecasted with
a high degree of accuracy.

This study underscores the need for climate change adaptation policies that consider these interactions between
temperature and humidity. The ability to foresee extreme conditions is crucial for agricultural planning, water
resource management, and public health, especially in a region susceptible to the impacts of climate change.
Predictive models, by offering reliable and detailed forecasts, become valuable tools for decision-making
regarding infrastructure, emergency response, and sustainable development strategies.

683



HSD Vol. 6, No. 2, October 2024, pp.671- 688

Given that only a small percentage of the variability in relative humidity was explained by changes in maximum
temperature, it is recommended to explore other factors that could influence these variables. This could include
more detailed studies on precipitation patterns, changes in vegetation cover, and human activities that alter local
conditions. Additionally, it is suggested to increase the sample size or use models that integrate more climatic
variables to improve the accuracy of the predictions.

Among the most significant limitations of this study is that the variability in relative humidity was only partially
explained by changes in maximum temperature. This suggests the probable influence of other factors not
considered in the model, which reduces its predictive capacity when only two climatic variables are taken into
account. Moreover, while the sample size is adequate for the objectives set, it may not be sufficient to accurately
capture seasonal fluctuations or extreme weather events. The absence of other relevant variables, such as wind
speed, solar radiation, or precipitation levels, may limit a deeper understanding of the climatic interactions in
the region under study.

In future research, it is essential to expand the analysis by incorporating a larger number of climatic variables
that may affect the relationship between temperature and humidity, such as precipitation patterns, changes in
vegetation cover, and human activities that modify local microclimatic conditions. Additionally, increasing the
sample size would allow for the inclusion of longer climatic periods, thereby strengthening the robustness of
the models and providing better insights into the long-term dynamics of the phenomena analyzed. Finally, it is
suggested to explore more complex predictive models, such as non-linear or hybrid approaches, which combine
various prediction techniques to enhance accuracy in forecasting climatic events in areas particularly vulnerable
to the effects of climate change.
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