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items, pharmaceuticals, and disinfectants, have increased alarmingly in aquatic
ecosystems. The efficacy of wastewater treatment plants in eliminating these
contaminants has been demonstrated. This study aims to find an alternative method,
such as using the fluidized bed reactor (FBR) with bacteria to remove amoxicillin
from wastewater. The active bacteria Acinetobacter baumannii and Klebsiella
pneumoniae were isolated from one of the pharmaceutical factories in Baghdad,
Irag, from Al-Jazeera wastewater, which was used in FBR technology to
decompose the antibiotic amoxicillin. The study examined several operational
parameters, including pH, total organic carbon (TOC), dissolved carbon dioxide
(CO2) concentration, airflow rate, amoxicillin concentration, and bacterial number,
while maintaining a constant temperature. High-performance liquid
chromatography (HPLC) was used to find the reaction route. The maximum
amoxicillin removal efficiency was 93% and 91% for Acinetobacter baumannii and
Klebsiella pneumoniae, respectively. For both bacterial species, the pH decreased
due to the formation of amino acids and CO,. The suitable operation condition was
5 mg/L of amoxicillin concentration, flow rate of 30 m/s, and the number of
bacteria 47 x 10° cfm/mL and 40 x 10° cfm/mL for Acinetobacter baumannii and
Klebsiella pneumoniae, respectively. After treatment, the number of bacteria
increased due to the degradation of amoxicillin. The steady-state time is found at
64 hours. The organic matter reaction pathway ends at the aromatic amino acid
lysine, which kills gram-negative bacteria. This method was found to be successful
in removing amoxicillin in low concentrations by using Acinetobacter baumannii.
In the future, treating amoxicillin in wastewater using FBR technology with gram-
positive bacteria is recommended.

© The Author 2024. Keywords: Amoxicillin, Airflow rate, Fluidized bed reactor, Water pollution,
Published by ARDA. Wastewater treatment

1. Introduction

Micropollutants, including hormones, detergents, personal care items, medications, and disinfectants, are a
major concern for aquatic ecosystems due to environmental harm [1]. From a few nanograms to several hundred
micrograms per liter, researchers have found pharmaceutical quantities in wastewater, surface water, and

This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that allows others @ G)
to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's authorship
and initial publication in this journal.
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groundwater [2, 3]. The sewage network carries antibiotics from human and animal secretions and waste (sweat
and urine) to wastewater treatment plants [4, 5], which are difficult to remove completely [6]. The use of
antibiotics in conventional treatment reduces bacterial activity. Over time, bacteria adapt to antibiotics, leading
to the emergence of antibiotic-resistant bacterial strains [6, 7]. Amoxicillin (AMO), a proven 3-lactam antibiotic,
effectively treats gram infections [8, 9, 10]. It was shown that AMO may promote the development of antibiotic
bacteria [11]. There are many methods used to treat amoxicillin from wastewater, such as UV/H-0, treatment,
solar/H,O, treatment [12, 13], adsorption, ozonation [14, 15], electrochemical processes [16], membrane
bioreactors [17], and fluidized bed reactors [18], is used to improve wastewater treatment. However, each
technology has limitations and disadvantages, such as low removal efficiency and high cost. Many studies have
investigated these techniques and found that sorbents from Moringa oleifera seeds could effectively remove
ibuprofen medication residues from municipal wastewater [19]. Another study found that activated carbon
effectively removes diclofenac from wastewater [20]. The ability and efficacy of membrane separation,
adsorption, and advanced oxidation processes (AOPSs) in eliminating commonly used drugs from Water are
explored. The continuous filtration mode was also investigated. Combining filtration (using activated carbon
(AC) and micelle-clay granule complexes) with AOPs improves the economy of treating wastewater, which
contains recalcitrant pharmaceutical compounds (PhACSs) [21]. Using a sulfidogenic fluidized bed reactor to co-
treat acidic Water was the subject of research.

Regarding the treatment of batch bioreactors using sulfate-reducing microorganisms. While ibuprofen and
diclofenac had some of the highest percentages at 58.6% and 52.3%, respectively, in the bioreactor, naproxen
and ketoprofen had clearance rates of 41.9% and 46.6%, respectively [22]. They have tested the biological
treatment of the white rot fungus Trametes versicolor in two different bioreactors. The stirred tank bioreactor
(STB) successfully removed 85 percent of the two naturally occurring pharmaceuticals found in the hospital's
wastewater [23]. Using microbial fluidized bed reactors to filter out pharmaceutical pollutants in wastewater: a
meta-analysis [24]. Examination of amoxicillin degradation by means of supercritical water gasification
(SCWG@G) in a continuous flow reactor. One study found that SCWG effectively removed 78.4 percent of organic
carbon from industrial wastewater [10]. This research aims to treat pharmaceutical wastewater containing the
antibiotic amoxicillin using fluidized bed reactor technology, which is a cheap and ecologically beneficial
technique. This research stands out because it uses bacteria in the amoxicillin production line of wastewater
from the Iraqi pharmaceutical plant Al-Jazeera.

There does not appear to be any research in the literature identifying microorganisms from the amoxicillin
manufacturing process.

2. Method
2.1. Chemicals

In this investigation, pure amoxicillin was obtained from the Al-Jazeera factory in Baghdad, Irag, and all spectral
measurements were performed using a single-beam spectrophotometer (UV/VIS), model SP-OPTIMA,
Germany, to obtain the maximum wavelength and standard curve.

2.2. Sampling, bacterial isolation, and no. of bacterial calculation

Using closed glass containers, wastewater samples were collected (in October 2022) from the Al-Jazeera
pharmaceutical factory in Baghdad, Irag. They took the samples to a lab to separate the germs.
The samples were grown on a nutrient slant and kept until needed. Bacteria were cultured on MacConkey agar
in a certain way to identify whether they were gram-positive or gram-negative. The Central Health Laboratory
in Baghdad, Iraqg, utilized Vitek 2 equipment to confirm the conventional identification of bacterial isolates.
One milliliter of effluent was diluted up to a concentration of 101-10° serially using normal saline. We cultured
nutrient agar with 0.1 mL of each dilution and incubated the plates at 37 °C for 24 hours. We used the following
calculation to get the number of colonies per milliliter [25].

No. of bacterial colonies (cfu/mL) = No. of colonies xImL x (1/dilution factor) D
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2.3. Bacterial dose and mineral salt medium (MSM)

Multiple methods were used to determine the dose of bacteria, and the optimal method was the dilution method.
"The dose given was 1 mL for each 1 L of mineral salt medium (MSM). The medium used contains the following
chemicals (g/L) produced by Sigma-Aldrich: K;HPOs, 0.5; KH2PO,4, 0.04; NaCl, 0.1; CaCl..2H.0, 0.002;
MgSQ4-7H20, 0.02; (NH4)2SO4. 0.2; and FeSO,. 0.001. After dissolving every component in 1000 mL of
distilled Water, the pH value was adjusted to 7", and the solution was then sterilized by autoclave [26, 27].

2.4. Determination of amoxicillin absorbance

The antibiotic amoxicillin has an absorption wavelength that ranges from 200 to 800 nm. Figure 1 shows the
absorbance peaks at 280 nm when measured using the UV-VIS spectroscopic technique. We also found the
calibration curve for the absorbance of amoxicillin as a function of its concentration. As shown in Figure 2, the
process implements Beer's Law for drug compounds ranging from 1-50 mg/L.
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Figure 1. The spectrum of amoxicillin solution (0.01 M) in the spectral range of 200-800 nm
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Figure 2. Calibration curves of the spectrum of amoxicillin

2.5. Dissolved CO; test

The CO; in the solution was allowed to develop before 25 mL of the sample was transferred to a conical flask
along with 0.05 mL of 0.1 N sodium sulfate and two drops of methyl orange indicator. Next, we changed the
hue of the mixture from red to yellow by titrating it with 0.02 N (NaOH). Titration with two drops of
phenolphthalein indicator showed a rosy color [25, 28]. To determine the amount of CO-, one uses the following
equation:

Dissolved CO, (mg/L) = (Ax Bx 50x 100) / V 2
Where A = mL of NaOH titrant, B = normality of NaOH, V = sample volume in mL.
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2.6. Calculation of minimum fluidization velocity Umf

One of the most critical concerns when designing and operating fluidized beds is determining the minimum
particle velocity during fluidization [29, 30]. An ascending fluid's drag force is larger than or equal to the mass
of the particles, and a surface gas velocity becomes dominant. The effect of fluidization velocity on particle
size, density, pressure, and temperature, among other fluid and particle properties [31, 32]. The liquid can move
between the adsorbent gaps at modest fluidization velocities, like in a packed bed. When the settled particles
start to separate, the flow rate starts to go up.

Further acceleration causes the particles to float on top of the liquid. The minimal fluidization velocity is the
abbreviation for this value. Increasing the fluidization velocity beyond (Um) causes the bed to expand since the
adsorbent particles are now further apart. Results from stable-state fluidization are gradual and without hiccups
[33, 34]. The pressure across the bed drops and stays constant [35, 36, 37]; the lowest fluidization velocity is
(Umf=10m/s), as shown in Figure 3. We examine the results of this treatment procedure using a range of
fluidization velocities (Umf = 10, 30, and 60 m/s).
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Figure 3. Minimum fluidization velocity

2.7. The pilot plant apparatus

An experimental fluidized bed reactor (FBR) was manufactured and used in this study. Figure 4 illustrates the
components of this station.
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Figure 4. The pilot plant FBR -
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Figure 5. The pilot plant's gas spargers

The apparatuses and equipment of the FBR included:

1. The iron structure with consistent dimensions to carry the contents of the FBR.

2. At the base of the station's flange is a column-shaped transparent acrylic tube with a 5 cm internal
diameter, 6 cm external diameter, 1 m height ideal for bacterial growth, and 5 mm thickness. Two
columns form the reactor's core column, which holds reaction materials.

3. There are two distributors for air regulation within the liquid column and two valves for receiving the
samples.

4. Use a monometer device. To measure the pressure generated by the liquid in different areas along the

experimental time.

A gas flowmeter (panel rotameter) is used to regular the amount of air entering during a unit of time.
Compressors are used for air supply.

Two tanks (drain) used for processing.

Spargers between two pieces of the flange; there are 69 holes with a diameter of 2 mm, totaling 2.17
cm?, which is 10.6% of the pipe section's overall area, as displayed in Figure 5. Since the amount of air
is constant over time, these spargers' primary function is to allow air to enter at various speeds and
bubble sizes.

O ~No O

2.8. Procedures

Synthesized wastewater containing amoxicillin was the subject of a series of experiments. The research took
place in a reactor with a fluidized bed. The operation condition variables included a 1 mL dose of bacteria (in
this study, two types of bacteria were used individually), different concentrations of amoxicillin (5, 30, 50
mg/L), and different velocities (10, 30, 60 m/s). The system was operated continuously for 64 hr until it reached
the steady-state phase. The samples were subjected to spectrophotometer tests at 280 nm to determine the
removal rate based on the amount of absorption, to determine the amoxicillin concentration, and to confirm
these results to the HPLC spectrum for all samples to determine the reaction pathway and the TOC concentration
and pH.

3. Results and discussion
3.1. Bacterial isolate collection and identification

Pharmaceuticals and other chemicals are abundant in industrial effluent. This study identified amoxicillin-
biodegrading bacteria from Al-Jazeera factor wastewater. Vitek 2 detected Acinetobacter baumannii and
Klebsiella pneumoniae in wastewater. In pairs or singles, "gram-negative, non-motile, non-spore-forming, non-
lactose fermenter Acinetobacter baumannii resembles a coccobacillus [38]. As illustrated in Figure 6, Klebsiella
pneumoniae is gram-negative, lactose-fermenting, facultatively anaerobic, encapsulated, rod-shaped, and non-
motile" [39].
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Figure 6. Isolation of Acinetobacter baumannii and Klebsiella pneumoniae from pharmaceutical wastewater
3.2. Different antibiotic concentrations

The experiments were conducted in two sets, one with Acinetobacter baumannii and another with Klebsiella
pneumoniae. In each set, three different concentrations of amoxicillin were used (5, 30, and 50 mg/L) while
maintaining constant air velocity (30 m/s) and pH 7 "at room temperature.” The findings illustrated in Figures
7 and 8 are related to Acinetobacter baumannii. Maximum removal efficiency of amoxicillin and TOC by using
5, 30, and 50 mg/L concentrations of the antibiotic was attained at 84%, 85%, 52.31%, 47%, and 27.12%, 30%,
respectively. The removal efficiency of amoxicillin and TOC by using Klebsiella pneumoniae were 62%, 69%,
40.33%, 19%, and 22%, 12%, respectively, as shown in Figures 9 and 10. TOC measures the amount of organic
carbon in the sample used in the analysis (every six hours), while measurement of amoxicillin concentration
(every four hours). The removal efficiency of amoxicillin and TOC increased with time. However, removal
efficiency decreases with increased amoxicillin concentrations due to the degradation of amoxicillin by
Acinetobacter baumannii and Klebsiella pneumoniae, which releases carbon dioxide and water [40, 41].
According to the results of the carbon dioxide levels before and after treatment, as shown in Figures 11 and 12,
CO;, concentration increased with time due to the oxidation of amoxicillin by bacteria. pH values decreased for
the two types of bacteria due to the degradation of organic matter into organic acids. Another reason can be the
dissolution of CO; and the formation of carbonic acid over time, as shown in Figures 13 and 14. Table 1 shows
the change in the number of bacteria throughout the experiment. The increase in the number of bacteria reflects
the decomposition process of amoxicillin, as it produces both amino acids and carbon dioxide. The reaction
course was examined using an HPLC device. Increased carbon dioxide production was observed at a
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concentration of 5 mg/L, indicating increased bacterial activity. At concentrations of 30 mg/L and 50 mg/L,
bacterial activity decreased, perhaps due to a change in pH. At these higher concentrations, it acts as an
antibacterial, which kills bacteria before removing them. The readings show that the pH is slightly different for
both types of bacteria. Hence, this technology works well to treat wastewater containing low concentrations of
antibiotics.
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Figure 14. Percentage of pH removal with time in FBR for amoxicillin with Klebsiella pneumoniae

Table 1. Number of bacterial isolates before and after treatment

Bacterial isolate No. of bacteria (cfu/mL)
Klebsiella pneumoniae 30x10°- 40 x10°
Acinetobacter baumannii 31x 10°- 47x10°

3.3. Different airflow rates

These experiments were conducted by varying the air speed (10, 30, and 60 m/s), holding all other variables
constant: amoxicillin concentration (5 mg/L), pH 7, and at room temperature. Two types of bacteria,
Acinetobacter baumannii and Klebsiella pneumoniae, were used. Figures 15 and 16 show the results of these

664



HSD Vol. 6, No. 2, October 2024, pp.657- 670

experiments related to the bacteria Acinetobacter baumannii. A decrease in the concentrations of amoxicillin
and TOC was observed with time, while the removal efficiency increased with time. The removal percentage at
a concentration of 5 mg/L showed values of 65%, 75%, 84%, 85%, and 93%, 97.4% at speeds of 10, 30, and 60
m/s, respectively. The results shown in Figures 17 and 18 associated with Klebsiella pneumoniae show that
amoxicillin and TOC concentrations decrease, and their removal efficiency increases over time. The removal
rates at a concentration of 5 mg/L were 59.29%, 67%, 62%, 69%, and 91%, 94% at speeds of 10, 30, and 60
m/h, respectively. Due to the high velocity, the drug substance gets closer to the bacteria that feed on it, which
increases the removal efficiency. However, higher speed also leads to higher oxygen levels, which helps bacteria
in the bacteriological decomposition process [42].
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3.4. Reaction pathway

The reaction route identifies amoxicillin breakdown byproducts and explains why the process stopped with both
bacteria. The Klebsiella pneumoniae chemical route includes aspartic acid, glutamic acid, serine, glysine,
alanine, cystine, valine, methionine, isoleucine, d-leucine, and lysine. For Acinetobacter baumannii, the
pathway included "aspartic acid, glutamic acid, serine, histidine, glysine, therionine, arginine, alanine, tyrosine,
cystine, valine, methionine, phenylalanine, isoleucine, leucine, and lysine. Aromatic amino acids are tonic and
invigorating [34]. Bacteria need it for metabolism, growth, and tissue repair. Figure 19 (A, B, and C) shows
several unnamed peaks. Both species of bacteria ended their chemical pathways with lysine. It stopped the
process by killing gram-negative bacteria like Klebsiella pneumoniae and Acinetobacter baumannii [43].
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4, Conclusions

The study concludes that biological treatment using FBR is an effective way to eliminate pharmaceutical
contaminants like amoxicillin. In addition, it was found to be extremely effective at removing contamination at
low concentrations of 5 mg/L, with removal rates of up to 93% when employing Acinetobacter baumannii and
91% when using Klebsiella pneumoniae. So, Acinetobacter baumannii's removal efficiency is higher than
Klebsiella pneumonia’'s. At a lower pH, amoxicillin degraded into amino acids, and the concentration of carbon
dioxide rose with both kinds of bacteria over time. The appearance of lysine at the end of the reaction path for
both bacteria indicates that the reaction has stopped because it suppresses the action of the bacteria and Kills
them because they are gram-negative. FBR is the best choice for removing pharmaceuticals and other
contaminants from wastewater.
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