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Abstract  

In recent decades, emerging pharmaceutical contaminants, such as personal care 

items, pharmaceuticals, and disinfectants, have increased alarmingly in aquatic 

ecosystems. The efficacy of wastewater treatment plants in eliminating these 

contaminants has been demonstrated. This study aims to find an alternative method, 

such as using the fluidized bed reactor (FBR) with bacteria to remove amoxicillin 

from wastewater. The active bacteria Acinetobacter baumannii and Klebsiella 

pneumoniae were isolated from one of the pharmaceutical factories in Baghdad, 

Iraq, from Al-Jazeera wastewater, which was used in FBR technology to 

decompose the antibiotic amoxicillin. The study examined several operational 

parameters, including pH, total organic carbon (TOC), dissolved carbon dioxide 

(CO2) concentration, airflow rate, amoxicillin concentration, and bacterial number, 

while maintaining a constant temperature. High-performance liquid 

chromatography (HPLC) was used to find the reaction route. The maximum 

amoxicillin removal efficiency was 93% and 91% for Acinetobacter baumannii and 

Klebsiella pneumoniae, respectively. For both bacterial species, the pH decreased 

due to the formation of amino acids and CO2. The suitable operation condition was 

5 mg/L of amoxicillin concentration, flow rate of 30 m/s, and the number of 

bacteria 47 x 105 cfm/mL and 40 x 105 cfm/mL for Acinetobacter baumannii and 

Klebsiella pneumoniae, respectively. After treatment, the number of bacteria 

increased due to the degradation of amoxicillin. The steady-state time is found at 

64 hours. The organic matter reaction pathway ends at the aromatic amino acid 

lysine, which kills gram-negative bacteria. This method was found to be successful 

in removing amoxicillin in low concentrations by using Acinetobacter baumannii. 

In the future, treating amoxicillin in wastewater using FBR technology with gram-

positive bacteria is recommended. 

© The Author 2024. 

Published by ARDA. 
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1. Introduction  

Micropollutants, including hormones, detergents, personal care items, medications, and disinfectants, are a 

major concern for aquatic ecosystems due to environmental harm [1]. From a few nanograms to several hundred 

micrograms per liter, researchers have found pharmaceutical quantities in wastewater, surface water, and 
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groundwater [2, 3]. The sewage network carries antibiotics from human and animal secretions and waste (sweat 

and urine) to wastewater treatment plants [4, 5], which are difficult to remove completely [6]. The use of 

antibiotics in conventional treatment reduces bacterial activity. Over time, bacteria adapt to antibiotics, leading 

to the emergence of antibiotic-resistant bacterial strains [6, 7]. Amoxicillin (AMO), a proven β-lactam antibiotic, 

effectively treats gram infections [8, 9, 10]. It was shown that AMO may promote the development of antibiotic 

bacteria [11]. There are many methods used to treat amoxicillin from wastewater, such as UV/H2O2 treatment, 

solar/H2O2 treatment [12, 13], adsorption, ozonation [14, 15], electrochemical processes [16], membrane 

bioreactors [17], and fluidized bed reactors [18], is used to improve wastewater treatment. However, each 

technology has limitations and disadvantages, such as low removal efficiency and high cost. Many studies have 

investigated these techniques and found that sorbents from Moringa oleifera seeds could effectively remove 

ibuprofen medication residues from municipal wastewater [19]. Another study found that activated carbon 

effectively removes diclofenac from wastewater [20]. The ability and efficacy of membrane separation, 

adsorption, and advanced oxidation processes (AOPs) in eliminating commonly used drugs from Water are 

explored. The continuous filtration mode was also investigated. Combining filtration (using activated carbon 

(AC) and micelle-clay granule complexes) with AOPs improves the economy of treating wastewater, which 

contains recalcitrant pharmaceutical compounds (PhACs) [21]. Using a sulfidogenic fluidized bed reactor to co-

treat acidic Water was the subject of research. 

Regarding the treatment of batch bioreactors using sulfate-reducing microorganisms. While ibuprofen and 

diclofenac had some of the highest percentages at 58.6% and 52.3%, respectively, in the bioreactor, naproxen 

and ketoprofen had clearance rates of 41.9% and 46.6%, respectively [22]. They have tested the biological 

treatment of the white rot fungus Trametes versicolor in two different bioreactors. The stirred tank bioreactor 

(STB) successfully removed 85 percent of the two naturally occurring pharmaceuticals found in the hospital's 

wastewater [23]. Using microbial fluidized bed reactors to filter out pharmaceutical pollutants in wastewater: a 

meta-analysis [24]. Examination of amoxicillin degradation by means of supercritical water gasification 

(SCWG) in a continuous flow reactor. One study found that SCWG effectively removed 78.4 percent of organic 

carbon from industrial wastewater [10]. This research aims to treat pharmaceutical wastewater containing the 

antibiotic amoxicillin using fluidized bed reactor technology, which is a cheap and ecologically beneficial 

technique. This research stands out because it uses bacteria in the amoxicillin production line of wastewater 

from the Iraqi pharmaceutical plant Al-Jazeera.  

There does not appear to be any research in the literature identifying microorganisms from the amoxicillin 

manufacturing process. 

2. Method 

2.1. Chemicals 

In this investigation, pure amoxicillin was obtained from the Al-Jazeera factory in Baghdad, Iraq, and all spectral 

measurements were performed using a single-beam spectrophotometer (UV/VIS), model SP-OPTIMA, 

Germany, to obtain the maximum wavelength and standard curve. 

2.2. Sampling, bacterial isolation, and no. of bacterial calculation 

Using closed glass containers, wastewater samples were collected (in October 2022) from the Al-Jazeera 

pharmaceutical factory in Baghdad, Iraq. They took the samples to a lab to separate the germs.  

The samples were grown on a nutrient slant and kept until needed. Bacteria were cultured on MacConkey agar 

in a certain way to identify whether they were gram-positive or gram-negative. The Central Health Laboratory 

in Baghdad, Iraq, utilized Vitek 2 equipment to confirm the conventional identification of bacterial isolates. 

One milliliter of effluent was diluted up to a concentration of 10-1-10-5 serially using normal saline. We cultured 

nutrient agar with 0.1 mL of each dilution and incubated the plates at 37 °C for 24 hours. We used the following 

calculation to get the number of colonies per milliliter [25]. 

No. of bacterial colonies (cfu/mL) = No. of colonies x1mL x (1/dilution factor)                       (1) 
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2.3. Bacterial dose and mineral salt medium (MSM)  

Multiple methods were used to determine the dose of bacteria, and the optimal method was the dilution method. 

"The dose given was 1 mL for each 1 L of mineral salt medium (MSM). The medium used contains the following 

chemicals (g/L) produced by Sigma-Aldrich: K2HPO4, 0.5; KH2PO4, 0.04; NaCl, 0.1; CaCl2.2H2O, 0.002; 

MgSO4·7H2O, 0.02; (NH4)2SO4. 0.2; and FeSO4. 0.001. After dissolving every component in 1000 mL of 

distilled Water, the pH value was adjusted to 7", and the solution was then sterilized by autoclave [26, 27]. 

2.4. Determination of amoxicillin absorbance  

The antibiotic amoxicillin has an absorption wavelength that ranges from 200 to 800 nm. Figure 1 shows the 

absorbance peaks at 280 nm when measured using the UV-VIS spectroscopic technique. We also found the 

calibration curve for the absorbance of amoxicillin as a function of its concentration. As shown in Figure 2, the 

process implements Beer's Law for drug compounds ranging from 1-50 mg/L. 

 

Figure 1. The spectrum of amoxicillin solution (0.01 M) in the spectral range of 200–800 nm 

 

Figure 2. Calibration curves of the spectrum of amoxicillin 

2.5. Dissolved CO2 test 

The CO2 in the solution was allowed to develop before 25 mL of the sample was transferred to a conical flask 

along with 0.05 mL of 0.1 N sodium sulfate and two drops of methyl orange indicator. Next, we changed the 

hue of the mixture from red to yellow by titrating it with 0.02 N (NaOH). Titration with two drops of 

phenolphthalein indicator showed a rosy color [25, 28]. To determine the amount of CO2, one uses the following 

equation:   

Dissolved CO2 (mg/L) = (Ax Bx 50x 100) / V                                                                               (2) 

Where A = mL of NaOH titrant, B = normality of NaOH, V = sample volume in mL. 

y= 0.002x + 0.0047
R2= 0.9999

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

A
b

so
rb

an
ce

Concentration mg/ L



 HSD Vol. 6, No. 2, October 2024, pp.657- 670 

660 

2.6. Calculation of minimum fluidization velocity Umf 

One of the most critical concerns when designing and operating fluidized beds is determining the minimum 

particle velocity during fluidization [29, 30]. An ascending fluid's drag force is larger than or equal to the mass 

of the particles, and a surface gas velocity becomes dominant. The effect of fluidization velocity on particle 

size, density, pressure, and temperature, among other fluid and particle properties [31, 32]. The liquid can move 

between the adsorbent gaps at modest fluidization velocities, like in a packed bed. When the settled particles 

start to separate, the flow rate starts to go up. 

Further acceleration causes the particles to float on top of the liquid. The minimal fluidization velocity is the 

abbreviation for this value. Increasing the fluidization velocity beyond (Um) causes the bed to expand since the 

adsorbent particles are now further apart. Results from stable-state fluidization are gradual and without hiccups 

[33, 34]. The pressure across the bed drops and stays constant [35, 36, 37]; the lowest fluidization velocity is 

(Umf=10m/s), as shown in Figure 3. We examine the results of this treatment procedure using a range of 

fluidization velocities (Umf = 10, 30, and 60 m/s). 

 

  

 

 

 

 

 

 

 
 

 

 

 

Figure 3. Minimum fluidization velocity 

2.7. The pilot plant apparatus 

An experimental fluidized bed reactor (FBR) was manufactured and used in this study. Figure 4 illustrates the 

components of this station. 

  
Figure 4. The pilot plant FBR                        
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Figure 5. The pilot plant's gas spargers 

The apparatuses and equipment of the FBR included: 

1. The iron structure with consistent dimensions to carry the contents of the FBR.  

2. At the base of the station's flange is a column-shaped transparent acrylic tube with a 5 cm internal 

diameter, 6 cm external diameter, 1 m height ideal for bacterial growth, and 5 mm thickness. Two 

columns form the reactor's core column, which holds reaction materials. 

3. There are two distributors for air regulation within the liquid column and two valves for receiving the 

samples. 

4. Use a monometer device.  To measure the pressure generated by the liquid in different areas along the 

experimental time. 

5. A gas flowmeter (panel rotameter) is used to regular the amount of air entering during a unit of time. 

6. Compressors are used for air supply. 

7. Two tanks (drain) used for processing. 

8. Spargers between two pieces of the flange; there are 69 holes with a diameter of 2 mm, totaling 2.17 

cm2, which is 10.6% of the pipe section's overall area, as displayed in Figure 5. Since the amount of air 

is constant over time, these spargers' primary function is to allow air to enter at various speeds and 

bubble sizes. 

2.8. Procedures 

Synthesized wastewater containing amoxicillin was the subject of a series of experiments. The research took 

place in a reactor with a fluidized bed. The operation condition variables included a 1 mL dose of bacteria (in 

this study, two types of bacteria were used individually), different concentrations of amoxicillin (5, 30, 50 

mg/L), and different velocities (10, 30, 60 m/s). The system was operated continuously for 64 hr until it reached 

the steady-state phase. The samples were subjected to spectrophotometer tests at 280 nm to determine the 

removal rate based on the amount of absorption, to determine the amoxicillin concentration, and to confirm 

these results to the HPLC spectrum for all samples to determine the reaction pathway and the TOC concentration 

and pH. 

3. Results and discussion 

3.1. Bacterial isolate collection and identification 

Pharmaceuticals and other chemicals are abundant in industrial effluent. This study identified amoxicillin-

biodegrading bacteria from Al-Jazeera factor wastewater. Vitek 2 detected Acinetobacter baumannii and 

Klebsiella pneumoniae in wastewater. In pairs or singles, "gram-negative, non-motile, non-spore-forming, non-

lactose fermenter Acinetobacter baumannii resembles a coccobacillus [38]. As illustrated in Figure 6, Klebsiella 

pneumoniae is gram-negative, lactose-fermenting, facultatively anaerobic, encapsulated, rod-shaped, and non-

motile" [39]. 
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Figure 6. Isolation of Acinetobacter baumannii and Klebsiella pneumoniae from pharmaceutical wastewater 

3.2. Different antibiotic concentrations 

The experiments were conducted in two sets, one with Acinetobacter baumannii and another with Klebsiella 

pneumoniae. In each set, three different concentrations of amoxicillin were used (5, 30, and 50 mg/L) while 

maintaining constant air velocity (30 m/s) and pH 7 "at room temperature." The findings illustrated in Figures 

7 and 8 are related to Acinetobacter baumannii. Maximum removal efficiency of amoxicillin and TOC by using 

5, 30, and 50 mg/L concentrations of the antibiotic was attained at 84%, 85%, 52.31%, 47%, and 27.12%,  30%, 

respectively. The removal efficiency of amoxicillin and TOC by using Klebsiella pneumoniae were 62%, 69%, 

40.33%, 19%, and 22%, 12%, respectively, as shown in Figures 9 and 10. TOC measures the amount of organic 

carbon in the sample used in the analysis (every six hours), while measurement of amoxicillin concentration 

(every four hours). The removal efficiency of amoxicillin and TOC increased with time. However, removal 

efficiency decreases with increased amoxicillin concentrations due to the degradation of amoxicillin by 

Acinetobacter baumannii and Klebsiella pneumoniae, which releases carbon dioxide and water [40, 41]. 

According to the results of the carbon dioxide levels before and after treatment, as shown in Figures 11 and 12, 

CO2 concentration increased with time due to the oxidation of amoxicillin by bacteria. pH values decreased for 

the two types of bacteria due to the degradation of organic matter into organic acids. Another reason can be the 

dissolution of CO2 and the formation of carbonic acid over time, as shown in Figures 13 and 14. Table 1 shows 

the change in the number of bacteria throughout the experiment. The increase in the number of bacteria reflects 

the decomposition process of amoxicillin, as it produces both amino acids and carbon dioxide. The reaction 

course was examined using an HPLC device. Increased carbon dioxide production was observed at a 
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concentration of 5 mg/L, indicating increased bacterial activity. At concentrations of 30 mg/L and 50 mg/L, 

bacterial activity decreased, perhaps due to a change in pH. At these higher concentrations, it acts as an 

antibacterial, which kills bacteria before removing them. The readings show that the pH is slightly different for 

both types of bacteria. Hence, this technology works well to treat wastewater containing low concentrations of 

antibiotics. 

Figure 7. Amoxicillin removal percentage with time 

in FBR with Acinetobacter baumannii 

Figure 8. TOC removal percentage with time in FBR 

with Acinetobacter baumannii  

Figure 9. Amoxicillin removal percentage with 

time in FBR with Klebsiella pneumoniae  
Figure 10. TOC removal percentage with time 

in FBR with Klebsiella pneumoniae  

 

  

Figure 11. Percentage of CO2 removal with time in 

FBR for amoxicillin with Acinetobacter baumannii 

Figure 12. Percentage of CO2 removal with time in 

FBR for amoxicillin with Klebsiella pneumoniae 
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Figure 13. Percentage of pH removal with time in FBR for amoxicillin with Acinetobacter baumannii 

Figure 14. Percentage of pH removal with time in FBR for amoxicillin with Klebsiella pneumoniae 

 

Table 1. Number of bacterial isolates before and after treatment 

Bacterial isolate No. of bacteria (cfu/mL) 

Klebsiella pneumoniae 30x105- 40 x105 

Acinetobacter baumannii 31x 105- 47x105 

3.3. Different airflow rates 

These experiments were conducted by varying the air speed (10, 30, and 60 m/s), holding all other variables 

constant: amoxicillin concentration (5 mg/L), pH 7, and at room temperature. Two types of bacteria, 

Acinetobacter baumannii and Klebsiella pneumoniae, were used. Figures 15 and 16 show the results of these 
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experiments related to the bacteria Acinetobacter baumannii. A decrease in the concentrations of amoxicillin 

and TOC was observed with time, while the removal efficiency increased with time. The removal percentage at 

a concentration of 5 mg/L showed values of 65%, 75%, 84%, 85%, and 93%, 97.4% at speeds of 10, 30, and 60 

m/s, respectively. The results shown in Figures 17 and 18 associated with Klebsiella pneumoniae show that 

amoxicillin and TOC concentrations decrease, and their removal efficiency increases over time. The removal 

rates at a concentration of 5 mg/L were 59.29%, 67%, 62%, 69%, and 91%, 94% at speeds of 10, 30, and 60 

m/h, respectively. Due to the high velocity, the drug substance gets closer to the bacteria that feed on it, which 

increases the removal efficiency. However, higher speed also leads to higher oxygen levels, which helps bacteria 

in the bacteriological decomposition process [42]. 

3.4. Reaction pathway 

The reaction route identifies amoxicillin breakdown byproducts and explains why the process stopped with both 

bacteria. The Klebsiella pneumoniae chemical route includes aspartic acid, glutamic acid, serine, glysine, 

alanine, cystine, valine, methionine, isoleucine, d-leucine, and lysine. For Acinetobacter baumannii, the 

pathway included "aspartic acid, glutamic acid, serine, histidine, glysine, therionine, arginine, alanine, tyrosine, 

cystine, valine, methionine, phenylalanine, isoleucine, leucine, and lysine. Aromatic amino acids are tonic and 

invigorating [34]. Bacteria need it for metabolism, growth, and tissue repair. Figure 19 (A, B, and C) shows 

several unnamed peaks. Both species of bacteria ended their chemical pathways with lysine. It stopped the 

process by killing gram-negative bacteria like Klebsiella pneumoniae and Acinetobacter baumannii [43]. 

Figure 15. Amoxicillin removal percentage with 

time in FBR with Acinetobacter baumannii  

Figure 16. TOC removal percentage with time in 

FBR with Acinetobacter baumannii  

Figure 17. Amoxicillin removal percentage with 

time in FBR with Klebsiella pneumoniae  

Figure 18. TOC removal percentage with time 

in FBR with Klebsiella pneumoniae  
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Figure 19a. HPLC spectra of amoxicillin degradation in FBR before treatment (control) 

 

 
Figure 19b. HPLC spectra of amoxicillin degradation in FBR -  Klebsiella pneumoniae 

 

 

Figure 19c. HPLC spectra of amoxicillin degradation in FBR - Acinetobacter baumannii 
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4. Conclusions 

The study concludes that biological treatment using FBR is an effective way to eliminate pharmaceutical 

contaminants like amoxicillin. In addition, it was found to be extremely effective at removing contamination at 

low concentrations of 5 mg/L, with removal rates of up to 93% when employing Acinetobacter baumannii and 

91% when using Klebsiella pneumoniae. So, Acinetobacter baumannii's removal efficiency is higher than 

Klebsiella pneumonia's. At a lower pH, amoxicillin degraded into amino acids, and the concentration of carbon 

dioxide rose with both kinds of bacteria over time. The appearance of lysine at the end of the reaction path for 

both bacteria indicates that the reaction has stopped because it suppresses the action of the bacteria and kills 

them because they are gram-negative. FBR is the best choice for removing pharmaceuticals and other 

contaminants from wastewater. 
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