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Abstract 

The goal of previous efforts has been to create hand prostheses with natural 

movements. Researchers have used tools to identify patterns in muscle signals 

associated with different hand movements. While many studies have successfully 

classified types of hand movements, it's important to analyze speed and strength to 

ensure that the resulting movements are natural. In this study, 16 healthy subjects 

were evaluated for (two) different forces and (six) hand movements using surface 

electromyographic (sEMG) records. A mixed effects model was used to examine 

the relationship between force and forearm sEMG signals. The results showed high 

R2 values (median 0.9) and significant random effects, indicating that sEMG 

signals can explain variations in force signals during different hand movements by 

introducing the type of movement as part of the random effects of the model. 
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1. Introduction  

In recent years, surface electromyography (sEMG) has proven to be an effective tool for human-robot 

interaction, especially in force prediction and prosthetic control. sEMG signals, which capture the electrical 

activity generated by muscles, offer a non-invasive way to estimate grip forces, joint angles, and other critical 

variables [1]–[6]. Also, in previous research, the focus has been on electromechanical systems designed to 

replicate movements that closely resemble those of natural hands [7]–[11]. For applications requiring force 

estimation to aid in fatigue diagnosis [1], [12], [13] and for applications that require predicting movement 

dynamics, such as velocities and types of motion [3]–[6], [14]–[19]. Other studies have utilized 

electromyography signals to connect them with dynamic traits, such as strength, in order to assess a subject's 

muscle status and enhance the precision of strength predictions [19]–[22].  

In [23], a model was created to establish a relationship between force and surface electromyography (sEMG), 

categorized into incremental and saturation zones. Each zone displayed different behaviors, and the models 

differed based on the type of movement. These zones are influenced by the number of motor cells recruited for 

the movement, which produces the sEMG. The type of movement also represents a difficulty in 
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generalizing a model that allows predicting the force accomplished. Consequently, the type of movement affects 

the parameters of the model, particularly when constructing a general model. In our study, we introduce a 

general model that includes mixed effects to elucidate how relates strength and sEMG signal. 

2. Methodology 

2.1. Data collection  

The six moments as shown in Figure 1: radial and ulnar deviation, and, flexion-extension, and pronation-

supination, as described in [23],[24]. The dataset includes 96 recordings from six movements performed by 16 

healthy subjects. For data acquisition, we used hardware for acquisition and Software for visualization as 

described in [23],[24]. To calculate the signal envelope, we applied a second-order Butterworth low-pass and a 

moving average of two samples with a 20 ms window, to sEMG. For force measurement, we employed a 

previously validated procedure [23].  The database does not contain the personal data of the participants. 

 

Figure 1. Studied movements; upper row: pron-supination; second row: flex-extension, bottom row: ulnar and 

radial deviation 

2.2. Modeling 

We computed the median sEMG tone and the median force signal for each type of movement. Following this,  

we were introduced to a mathematical linear model (mixed-effects model -GLME), utilizing the tone from 

sEMG as direct or fixed effects and the various movement types as aleatory effects [25]. In the following 

equation, we can observe the model form linear. 

𝐹𝑜𝑟𝑐𝑒 = 𝑎 ∗ 𝑠𝐸𝑀𝐺 + 𝑖𝑛𝑡 + 𝑚𝑡𝑚                          (1) 

Where:  

a= slope value 

sEMG=Tone (sEMG envelope) 

b=intercept 

mtm=move type model (random effects) 

3. Results 

The results have four parts. The first part focuses on the characteristics of the data for the conception of the 

model. The second part presents the parameters and statistical results of the calculated model. The third part 

shows the results of a cross-validation where the linear model is obtained by a linear regression model for each 

type of movement. In this way, we obtained a model, which observed differences since the behavior is different 

in the different zones of the force response in each movement. Finally, it shows results from validation using 

the GLME model. 
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3.1. Features of GLME 

Our GLME model uses 192 recordings (96 sEMG and 96 force) that correspond to the tone of the signals 

(envelope). These constitute the observations of the model. We incorporated a categorical variable into each 

observation about the type of movement (six) where the data have a statistical distribution of GAUSS bell. Table 

1 shows a summary of these characteristics. 

Table 1. Features of GLME 

Features Value 

Observations 96 

Fixed effects coefficients 1 

Random effects coefficients 6 

Distribution Normal 

3.2. Statistical results for GLME 

Table 2 displays the findings. We observe that the aleatory and direct effects (movement type and sEMG) 

influence the outcome of the model (p-value < 0.05). Also, it observed that the intercept value is of low 

significance. In Figure 2, it is shown the measured force and estimated strength as a function of 

electromyographic signal and aleatory effects.  

Table 2. Results of GLME 

Name Estimation Square error (SE)    P value 

Intercept 0.00012 0.095 0.9 

sEMG 0.0075 0.044 <0.05 

Random effects coefficients 

(mtm) 

Std = 1.16 *10-3 

p-value  <0.05 

Determination coefficient R2 0.91 

 

Figure 2. Force model GLME (excluding the intercept) compared to the measured force 

Figure 2 shows that the force exerted depends on the electromyography signal but also the type of movement 

has a certain influence that cannot be neglected. In this way, when calculating the force from a linear model that 

is obtained for each movement, this model cannot be used to estimate force if the movement is different, see 

Figure 3. 

3.3. Cross-validation by each movement type 

In Figure 3, you can see the force measured in a pronation movement compared to various estimates based on 

a model that relates force to surface electromyography (sEMG) signals. The graph illustrates the force measured 

during the pronation movement. As the line steadily rises, it stabilizes at approximately 0.03 N in just 2 seconds, 

indicating the muscle's active engagement and adaptive force modulation throughout the movement. The 
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pronation model shown in the green line, which was calculated using the sEMG relationship, mirrors the 

measured force's pattern, demonstrating its precise predictive capabilities for force in this specific scenario. 

Conversely, the estimated forces from the extension, flexion, and ulnar deviation models (gray, yellow, and 

orange lines), which rely on a different approach, fall short of capturing the intricate dynamics of the pronation 

movement. This striking contrast highlights a crucial limitation; a single model is not adequate to explain and 

address the complexity of various movement types. This can be explained because the class of movement has 

not been taken into account to obtain all responses of the models. Therefore, when cross-validating, large 

differences are observed. By using a general mixed effects model, these differences are reduced, observing a 

better estimation of the force, see Figure 4 and Table 2. 

 

Figure 3. Cross-validation without taking into account the type of movement for the calculation of each model 

3.4. Validation using GLME 

The general model proposed in this work is the one described by Equation 1. Here, we have taken into account 

that there are variations in each type of movement (according to Figure 3). Consequently, the model obtained 

with the data in Table 2 and Figure 2 explains the changes in force as a function of sEMG and the type of 

movement. To assess the predictive capacity of GLME, we have performed tests with 96 records comparing the 

measured force with that estimated by the model, obtaining an approximate root mean square error of 6.44%. 

In Figure 4, you can see a comparison of force model GLME (excluding the intercept) with the measured force 

to an example of movement flexion. 

 

Figure 4. Comparison of the force model GLME (excluding the intercept) with the measured force (flexion 

movement)  

4. Discussion  

Previous studies have conducted research into strength prediction from electromyographic signals. Authors [6] 

and [20] focus on grip strength, [5], [12], [20], [21], [26], and [27] extend their approach to integrate both 

movement dynamics and gesture recognition and expert systems to classification moves. So [28] adds a novel 
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perspective on the variability in force prediction during different muscle phases, raising questions about the 

ability of previous models to capture these temporal fluctuations. This approach may be crucial to improving 

accuracy in prosthesis control in real-world situations, where muscle dynamics are constantly changing. Some 

authors suggest that linear relationships may be adequate under certain conditions, but studies such as [28] 

highlight the nonlinear complexity of sEMG signals, especially during dynamic contractions. In contrast, our 

study addresses a linear mixed-effects model, in which a categorical variable such as movement class is 

weighted to assess its statistical significance, resulting in a more consistent prediction of force. This suggests 

that although linear models are simpler to implement, they may not be robust enough in complex situations. 

However, in our work, we have studied six movements using a general mixed effects model, where results 

presented in Table 2 provide a clear insight into the influence of sEMG signals on force prediction and the 

importance of random effects arising from different types of muscle movements. The estimated intercept value 

was 0.00012, with a squared error value of 0.095 and a p-value of 0.9. This p-value indicates that the intercept 

is not statistically significant, indicating that the model cannot predict a relevant constant value of force when 

sEMG signals are null, in other words, it would not be relevant to include the intercept value in the model to 

adequately predict force from sEMG tone. In practical terms, this suggests that the constant component of force, 

without the influence of sEMG signals, is negligible for this model, which could also be interpreted as a 

validation that force variability is mainly linked to variations in the electromyographic signal. On the other hand, 

the sEMG parameter was 0.0075, with a squared standard error of 0.044 and a p-value < 0.05.  It suggests that 

the increase in sEMG signals has a direct and considerable impact on the increase in muscle force, validating 

the use of sEMG as a robust predictor of the force generated by the muscle. The small standard error value 

reinforces the precision of this estimate. 

The random effects are summarized in the table under the category random effects coefficients, with a standard 

deviation of 1.16 x 103 and a p-value < 0.05. These results are of particular interest because they highlight the 

influence of movement type as an important variability factor in the model. The low standard deviation indicates 

that, although there are differences between the different types of muscle movements, these variations are not 

excessively large. However, the p-value < 0.05 confirms that these random effects are significant, suggesting 

that each type of movement substantially influences the relationship between sEMG and force, justifying the 

inclusion of random effects in the model. 

The high R² value (0.91) is an indicator of the quality of the model fit. This implies that the GLME model with 

random effects for different movements and the variable sEMG as a predictor provides an accurate and reliable 

description of the relationship between electromyographic signals and the generated force which contrasts with 

the results of [13], [29] and [28]. 

5. Conclusion  

We demonstrate a linear relationship between the EMG and force signals in six moves (pronation, supination, 

flexion, extension, ulnar deviation, and cubital deviation). Our model includes sEMG, an additive random effect 

associated with movement class. Although the intercept is not statistically significant, including random effects 

related to different movement types significantly enhances the model’s accuracy, as evidenced by a high R² 

value. This approach captures the complexity of the force-sEMG relationship, particularly by accounting for 

variability introduced by distinct movements. When the movement type is included in the model, the 

relationship between force and sEMG signals becomes linear. Random effects associated with movement types 

greatly influence the model's outcome. The coefficient of determination improves when the intercept is excluded 

from the model. 
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